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A theoretical foundation for spin(8) gauge field theory is proposed to explain 
the numerical results announced in a previous paper. 

1. S U M M A R Y  

Spin(8) gauge field theory, as defined herein, has the following 
structure: 

A Yang-Mills principal fibre bundle with base manifold S 4 and gauge 
group spin(8). The base manifold S 4 corresponds to space-time. The quater- 
nionic structure of S 4 naturally corresponds to a {3, 3, 4, 3} lattice structure 
of space~time that gives a naturally Lorentz-invariant lattice gauge theory. 

The gauge group spin(8) decomposes at the Weyl group level into 
spin(5), SU(3), spin(4), and the maximal torus U(1) 4. 

The spin(5) component corresponds to a gauge theory of de Sitter 
gravitation with a cosmological term as described by MacDowell and 
Mansouri (1977). 

The SU(3) component corresponds to a gauge theory of the color force. 
The spin(4) = SU(2) x SU(2) component corresponds to a gauge theory 

of the weak force with a geometric form of spontaneous symmetry breaking 
from spin(4) to SU(2). 

The U(1) 4 component corresponds to the four components of the 
photon in the path integral formulation of quantum electrodynamics. 

For spinor matter fields, there is an associated bundle to the principal 
bundle that is related to the spinor representation of spin(8). One eight- 
dimensional half-spinor space corresponds to the first-generation fermion- 
particles as given in Table IV of Section 6. The mirror image eight- 
dimensional half-spinor space corresponds similarly to the first-generation 
fermion antiparticles. 
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In spin(8) gauge field theory the speed of light, Planck's constant, and 
the electron mass are given. One can then calculate the quantities given in 
Table V of  Section 18. 

As will be seen, spin(8) gauge field theory is at present incomplete, 
but enough has been done so far that it seems very likely that the structure 
outlined above can be completed to produce a theory of physics that is in 
substantial accord with present experimental results. 

Note  on notation. I have tried to use standard notation throughout this 
paper, but since the subject matter is not standard, some nonstandard usages 
may appear. Examples include: using the symbol " x "  for both the Cartesian 
product and a twitsted product; using the term "decomposit ion" when the 
whole object is not the direct sum of orthogonal factors; and referring to 
a Lie group G or Lie algebra g generally when in fact only a specific 
representation is being used. I hope that the meaning of  such nonstandard 
usages is made clear by the context. 

Further, references are not intended to be to the primary origin of the 
concept cited, but are instead to the reference I found most useful. 

2. INTRODUCTION 

In 1971, Armand Wyler wrote a paper in which he purported to calculate 
the fine structure constant to be o~ = 1/137.03608 and the proton-electron 
mass ratio to be mp/me = 67r 5 = 1836.118 from the volumes of homogeneous 
symmetric spaces (Wyler, 1971). Although the numerical values were close 
to experimental data, the physical reasons he gave for using the particular 
volumes he chose were not clear. Freeman Dyson invited Wyler to the 
Institute for Advanced Study in Princeton for a year to see if Wyler could 
develop good physical reasons. However, Wyler was primarily a 
mathematician and did not produce a convincing physical basis for his 
numerical calculations. With no clear physical basis, Wyler's results were 
dismissed by many physicists, such as those writing letters in the November 
1971 issue of Physics Today, as mere unproductive numerology. 

As far as I know, no further work was done on Wyler's results. It 
seemed to me that even though Wyler did not come up with a good physical 
basis, there might be one. To look for one, I started by trying to study 
generalizations of complex manifolds to quaternionic manifolds that have 
the structure of space-time. 

In 1965, Wolf wrote a paper in which he classified the four-dimensional 
Riemannian symmetric spaces with quaternionic structure (Wolf, 1965). 
There are just four equivalence classes, with the following representatives: 

T 4 :  U(1) 4 
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$2• S 2= SU(2)/U(1)  x SU(2)/U(1)  

CP 2= SU(3)/  S( U(2) x U(1)) 

S 4 = spin(5)/spin(4) 

Although Wolf's paper was pure mathematics with no attempt at 
physical application, it seemed to me that the occurrence of the gauge group 
of electromagnetism U(1), the gauge group of the weak force SU(2), the 
gauge group of the color force SU(3), and the gauge group of de Sitter 
gravitation spin(5) might be physically significant. 

Another indication of the possible physical significance of quaternionic 
structure was a paper of Finkelstein et al. (1963) in which they used 
quaternionic structure to construct a geometric spontaneous symmetry- 
breaking mechansim producing two charged massive vector bosons and one 
massless neutral photon. 

I then started trying to construct a gauge field theory with a four- 
dimensional base manifold having quaternionic structure and a gauge group 
that would include U(1) 4, SU(2)• SU(2)=spin(4), SU(3), and spin(5). 
Such a gauge group should have dimension at least 4+6+8+10=28 .  If 
U(1) 4 is taken to be part of a maximal torus, the rank of the gauge group 
should be at least 4. 

As spin(8) has rank 4 and dimension 28, it is a natural candidate. 
However, it does not even include U(1)x SU(2)• SU(3) as a subgroup. 
To have U(1) 4, spin(4), SU(3), and spin(5) included in it, spin(8) must be 
decomposed at the Weyl group level rather than decomposed into subgroups. 

As noted by Gfinaydin and Gfirsey (1973) and Georgi (1982), elements 
of spin(8) can be represented as triples of Pauli matrices. Triples of Pauli 
matrices act on triples of spinors. Triples of spinors correspond naturally 
to the classification of first-generation leptons and quarks by Harari (1979), 
Shupe (1979), and Adler (1980). 

Gfinaydin and Gfirsey (1973) showed that the triples of spinors are 
equivalent to octonions. 

By applying Wyler's method to structure, I was able to calculate a 
number of particle masses and force strength constants (Smith, 1985). All 
were roughly consistent with currently accepted experimental results, except 
the truth quark mass mt ~ 130 GeV. CERN has announced that m, ~ 45 GeV 
(Rubbia, 1984), but I think that the phenomena observed by CERN at 
45 GeV are weak force phenomena that are poorly explained by the standard 
SU(2) x U(1) model. I further think that current CP-violation experimental 
results (Wojcicki, 1985) are consistent with mt ~ 130 GeV and the Kobay- 
ashi-Maskawa parameters calculated herein from spin(8) gauge field theory, 
and that the CERN value of mt~-45 GeV is not consistent with those 
experimental results. 
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As of the summer of 1985, CERN has been unable to confirm its 
identification of the truth quark in the 45-GeV events, as the UA1 experimen- 
ters have found a lot of events clustering about the W • mass and the UA2 
experimenters have not found anything convincing (Miller, 1985). I think 
the clustering of UA1 events near the W • mass indicates that the events 
observed are nonstandard weak force phenomena. 

Since the mass of  the t-quark and the Kobayashi-Maskawa parameters 
related to the t-quark are predictions of spin(8) gauge field theory that are 
experimentally determinable and can be used to confirm or refute spin(8) 
gauge field theory, I think that it is appropriate to call the t-quark the truth 
quark. 

3. PREGEOMETRY AND CLIFFORD ALGEBRA 

It is natural to look for more and more elementary foundations for a 
physical theory, with a goal of describing wider ranges of phenomena using 
fewer and simpler basic concepts. For instance, Misner et al. (1959) conclude 
their classic book Gravitation with a discussion of the possibility of deriving 
the laws of  physics from a pregeometry based on the calculus of propositions. 

Here, standard set theory is taken to be the elementary foundation 
from which physical theory should be constructed. From set theory, a rough 
sketch is given of the construction of pregeometry. Crude rules are set out 
for deriving spin(8) gauge field theory from pregeometry. 

Begin with the empty set ~3, the operation { } called brace, the operation 
& called union, and the standard rules 

if s is a set, so is (s) 
{s&s}={s} 
if s l , . . . , s n  are sets, so is {Sl&" �9 �9 &sn} 

The rank of a set  is defined to be the maximal number of bracing 
operations used on O within the set in the construction of  the set. 

The number of sets, including the null set, of  rank at most k is denoted 
by n(k) and given by n(0) = 1 and the recurrence relation n(k) = 2 n(k-1). 

The sets of rank at most k have a natural 1-1 correspondence with the 
subsimplexes of a topological simplex of n(k- 1 ) -  1 dimensions. To see 
this, note that an m-dimensional simplex has 2 "+1 subsimplexes, with ,,+1Cj 
subsimplexes of  dimension j - 1, where the null set is given d imens ion-  1. 
Consider the situation depicted in Table I. Rank 5 set theory has enough 
sets to define numbers counting up t o  265,536 , or to put it another way, to 
define real numbers on the unit interval up to the accuracy of 2 -65,536 . As 
there may be about 10 s~ particles in the observed universe, rank 5 set theory 
is the lowest rank set theory that has the potential to describe our universe. 
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Table I. 

,(0) = 1 O 

n(1)=2 O {~} 

{{O}} 
n(2) = 4 Q 

{0a{0}} 

n(3) = 16 

n=(4 )=65 ,536  

n(5) =265,536 

@ O @ @ O  
@ @ @ 0 @ @  

@ @ @ @ @  

Rank 5 set theory contains the empty set O and everything of the form 
{... X.. .},  where . . .  X . . .  is a combination of the five fundamental objects 
of rank less than 5: 0 ,  {O}, {{Q}}, {{{O}}}, and {{{{0}}}}. Of those five 
objects, the empty set ~ is distinguished by the fact that it does not involve 
the bracing operation { }. 

The five fundamental objects naturally form an oriented 4-simplex, 
called a tetrad: {~&{O}&{{~}}&{{{O}}}&{{{{~}}}}}. It has five vertices, one 
of which is the distinguished empty set ~.  If Q is taken to be the origin, 
then it can be described by four vectors from the origin to each of the other 
four vertices. Each of the four vectors can be considered to be of unit length 
with sign either plus or minus. As rank 5 set theory contains numbers up 
t o  265'536, the length of the vectors can be defined and a four-dimensional 
vector space can be constructed. The tetrad can then be seen to be equivalent 
to the pseudoscalar of the 2 4 = 16-dimensional Clifford algebra of R 4. It is 
the highest dimensional Clifford algebra pseudoscalar in rank 5 set theory. 

The fundamental physical significance of the tetrad has been studied 
by Finkelstein and Rodriguez (1982, 1984) and by Sirag (1981), whose 
works have been influential in developing this pregeometry. Keller (1984) 
has done work beginning with the pseudoscalar 3's of the Dirac Clifford 
algebra of R 3"1. The finite group of the permutations and orientation- 
preserving sign changes of the four vectors of the tetrad is $4 x Z~, the Weyl 
group of/94, the Lie algebra of the simply connected Lie group spin(8). 

As will be seen later, the gauge bosons, space-time, and spinor matter 
fields of spin(8) gauge field theory naturally correspond to the exceptional 
Lie group F4, and the three generations of fermions naturally correspond 
to the exception Lie groups Er, ET, and Es, so it is probable that spin(8) 
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gauge field theory is truly fundamental. It is also probable that use of higher 
rank set theory will give nothing new, as there are no higher dimensional 
exceptional Lie groups and as it is unlikely that one needs to count higher 
than 265 ,536  . 

Denote the 2"-dimensional Clifford algebra of R n by Cn, and its 
subspace of grade r by Cn,, whose elements are called multivectors of grade 
r, or r-vectors (Hestenes and Sobczyk, 1984). The bivectors Cn2 of Cn are 
closed under the commutator product, so that they form a Lie algebra. The 
bivector algebra, by exponentation and mapping to the universal covering 
group, gives spin(n). 

From the Clifford algebra point of view, $4 x Z 3 can be thought of as 
the orientiation-preserving symmetry group of the four-dimensional orien- 
ted pseudoscalar C44 of C4, which has 1 + 4 + 6 + 4 + 1 = 24= 16 dimensions. 
The orientation-preserving symmetry group S4X Z 3 corresponds to the 
permutations and the orientation-preserving changes of sign of the four 
vectors of C41. That finite symmetry group is the Weyl group of D4. It has 
4! 24-1 =4!  2 3= 192 elements. It induces a finite symmetry group of the 
four-dimensional vector space C4~. 

Consider the Weyl group of D4 as a finite reflection group in the 
four-dimensional vector space C41 with basis { e l , . . . ,  e4}. It is the group 
of  reflections in hyperplanes perpendicular to the 2 ( 4 - 1 ) 4 = 2 4  points 
{+ e~ + ej [ 1 -< i < j -<  4}, which points are called root vectors. The hyperplane 
perpendicular to the point ei - ej permutes the vectors e~ and ej, and the • 
signs account for the orientation-preserving changes of sign. Note that in 
the case of /94 the root vectors form a regular polytope, the 24-ce11. 

The 24 root vectors plus the four vectors of  C41 form a 28-dimensional 
Lie algebra that is isomorphic to the 8 ( 8 - 1 ) / 2 !  = 28-dimensional bivector 
algebra C82, which is the Lie algebra of spin(8). The four vectors of C41 
are the Cartan Clifford subalgebra of the D4 Lie algebra of  spin(8), the 
bivector algebra of the Clifford algebra C8. The algebra C8 has 28= 256 
dimensions: 

1 8 28 56 70 56 28 8 1 C8 

The vector part of C8 is eight-dimensional, indicating that spin(8) acts 
naturally on an eight-dimensional vector space base manifold. 

The expanded spinor representation of C 8, and of the bivector algebra 
spin(8), has dimension 1 + 8 + 2 8 + 5 6 + 7 0 + 5 6 + 2 8 + 8 +  1 = 2 5 6 =  16x 16, 
and can be written as 16 x 16 matrices. It decomposes into even and odd 
parts that can each be written as 16 x 8 matrices, corresponding to the 
1 + 28 + 70 + 28 + 1 = 128-dimensional even part of C8 and the 8 + 56 + 56 + 
8 = 128-dimensional odd part of C8. 
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The (usual) spinor representation of C8 and spin(8) is the dimension 
of a minimal ideal of the 16 • 16 matrices, and can be written as a 16 x 1 
column matrix. The 16-dimensional 16 x 1 spinor representation decomposes 
into two eight-dimensional 8 • 1 irreducible half-spinor representations cor- 
responding to the even and odd parts of C8. 

The half-spinor representations should correspond to the fermion 
spinor matter fields in spin(8) gauge field theory. 

The eight-dimensional vector space base manifold in spin(8) gauge 
field theory should be reduced by a geometric Higgs mechanism described 
in Section 10 to a four-dimensional space-time base manifold. To see how 
that might work, consider that the vector space of the C4 Clifford algebra 
corresponds to the Cartan subalgebra of the bivector spin(8) Lie algebra 
of C8: 

1 8 28 56 70 56 28 8 1 C8 
1 4 6 4 1 Cartan C4 

The four-dimensional space-time spin(8) base manifold should be the 
part of the eight-dimensional vector space C81 that is defined as follows: 
begin with the four-dimensional Cartan subalgebra of the spin(8) bivectors 
C82, which is defined by the four-dimensional vector space C41; then note 
that the Clifford product in C4 of the four vectors of C41 gives the C4 
pseudoscalar C44; then note that the pseudoscalar Cnn in a Clifford algebra 
Cn can be considered to be an n-dimensional volume element of the vector 
space Cr/1; then note that the pseudoscalar C44 defines a four-dimensional 
subspace in the C8 pseudoscalar C88; and then see that the corresponding 
four-dimensional subspace of the vector space C8l should correspond to 
the physically realistic space-time base manifold that remains after the 
action of the geometric Higgs mechanism in spin(8) gauge field theory. 
Note that this method identifies physical space-time with the four- 
dimensional vector space of the C4 Clifford algebra, which in turn can be 
naturally identified with the four standard Dirac y~ vectors of the C(3, 1) 
Clifford algebra. 

The Cartan Clifford subalgebra C4 decomposes into even and odd 
irreducible components, of dimension 1 + 6 +  1 = 23 = 8 and 4+4 = 23 = 8. 
They are the expanded 4 x 2 half-spinor spaces for the C4 Clifford algebra, 
and correspond to the ordinary 8 x 1 half-spinor spaces of the spin(8) C8 
Clifford algebra. The ordinary 2 • 1 half-spinor spaces for the C4 Clifford 
algebra, which correspond to the ordinary half-spinors of the Dirac 
equation, are subspaces of the ordinary spin(8) half-spinor spaces. 

In summary, set theory gives the C4 Clifford algebra, whose symmetries 
generate the C8 Clifford algebra, which gives: a spin(8) gauge group; an 
eight-dimensional base manifold that can be reduced to a four-dimensional 
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space-time; and two mirror image eight-dimensional half-spinor spaces 
corresponding to the first-generation fermion particles and antiparticles. 

The underlying C4 Clifford algebra has a spin(4) bivector algebra that 
corresponds to the standard physical Lorentz group, and also has spin(4) 
half-spinors that correspond to the half-spinors of the Dirac equation. 

The use of C4 pseudoscalar symmetry to generate the Weyl group of 
the spin(8) bivector algebra of the C8 Clifford algebra is similar to Keller's 
use of the 3'5 Dirac pseudoscalar symmetry (Keller, 1984). 

It might be that spin(8) gauge field theory can be given a more unified 
structure by considering larger groups. 

The Clifford fibration spin(8)-~ spin(9)- S8 shows that spin(9) is the 
twisted product of the gauge group spin(8) and the unreduced base manifold 
S s (Atiyah et al., 1964; Porteous, 1981; Grossman et al., 1984). Therefore 
spin(9) may include all the structure of spin(8), gauge field theory except 
that of the spinor matter field within itself, by identifying the eight 
infinitesimal generator root vectors of spin(9) not of spin(8) as correspond- 
ing to the unreduced space-time base manifold. 

It might be possible also to include the spinor matter field, if the 
16-dimensional full spinor space of spin(8) gauge field theory could be 
identified with the 16-dimensional Cayley projective plane OP 2. The fibra- 
tion spin(9)- F4~ OP 2 shows that F4 is the twisted product of spin(9) and 
OP 2 [see Besse (1978), where/74 is described as the automorphism group 
of the exceptional 27-dimensional Jordan algebra M3(O) of 3 x 3 Hermitian 
matrices of octonions with the product A o B = (1/2)(AB + BA)]. 

Then F4 = spin(8) • S s x O P  2 could include all the structure of spin(8) 
gauge field theory, including the fermion spinor lepton and quark particles 
and antiparticles, which would correspond to the 16 infinitesimal generator 
root vectors of F4 not of spin(9). 

Note that F4 may be the "core" of the E-series of exceptional Lie 
algebras, in the sense that G2 is the "core of spin(7), spin(8), spin(9), and 
F4, due to the fibration G2~spin(7)-~S 7 (Porteous, 1981), with spin(7) 
being the twisted product G2 • S 7 of the automorphism group of octonions 
O and the imaginary octonions, so that; 

spin(7) = G2 x S 7 
spin(8) = G2 x S 7 x S 7 
spin(9) = G 2 • S 7 x S 7 x S s 

F4 = G 2 •  S 7X S 7X S 8XOp2 

Denote by Ma(O)o the 26-dimensional subspace of M3(O) having trace 
0. Then, following the Freudenthal-Tits magic square described in McCrim- 
mon (1978), it may be possible to show that 

E6 ----- F4 x M3(O)o 
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z37 = F,, x s 3 x M ~ ( O ) o  x M~(O)o 'X  M ~ ( O ) o  

E~ = F~ x C~ x M3(O)o x M3(O)o x M~(O)o x M~(O)o x M~(O)o 
x M3(O)o x M3(O)o 

It may be that the above scheme is related to the following irreducible 
symmetric spaces; 

Er/spin(10) x S 1 of dimension 32 and rank 2 
ET/spin(12) x S 3 of  dimension 64 and rank 4 
Es/spin(16) of  dimension 128 and rank 8 

As M3(O) naturally coordinatizes O P  2 (McCrimmon, 1978) and 
F4/spin(9) --- O P  2 of  dimension 16 and rank 1, it may be that 

E6/spin(10) x S 1 ~- O P  2 X OP 2 
ET/spin(12) x S 3 = O P  2 x {}p2 x (}p2 x O P  2 

Es/spin(16) = O F  2 x O P  2 x O P  2 x O P  2 x O P  2 x O P  2 x O P  2 x O P  2 

If  Fa = spin(8) x S 8 x O P  2 describes action of the gauge group spin(8) 
acting within the space-time S s on the fermions of  O P  2, what about the 
fermion generation structure? 

The first-generation fermions may correspond to M3(O)o, in which O P  2 
is naturally imbedded. What is needed is a map from the O P  2 in F4 to the 
M3(O)o. Such a map naturally occurs in the structure of E6 = F4 x M3(O)0, 
being the map to the M3(O)o in E6 corresponding to the one imaginary 
generator of  the complex numbers. E6 may describe the physics of  the 
first-generation fermions. 

The second-generation fermions may correspond to M3(O)o x M3(O)o. 
A map from the OP  2 in F4 to M3(O)0 x Ma(O)o occurs naturally in 

Ey = F, x s 3 x M3(O)o x M3(O)0 x M3(O)o 

by taking the map to the M3(O)o x M3(O)o in E7 corresponding to the two 
imaginary generators of  the quaternions. E7 may describe the physics of 
the second-generation fermions. 

The third-generation fermions may correspond to Ma(O)o x M3(O)o x 
M3(O)o. A map from the O P  2 in F4 to M3(O)o x M3(O)o x M3(O)o occurs 
naturally in 

E8 = Fa x (32 x M3(O)o x M3(O)o x M3(O)o x Ms(O)o x Ms(O)o 

x M3(O)o x M3(O)o 

by taking the map to the Ma(O)o x M3(O)o x Ms(O)o in Es corresponding 
to the three imaginary generators of  the octonions. Es may describe the 
physics of  the second-generation fermions. 

E6, ET, and Es may correspond to the first-, second-, and third-gener- 
ation fermions. There should be no higher generations. 
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4. WEYL GROUP DECOMPOSITION OF SPIN(8) 
A N D  G A U G E  B O S O N S  

The Weyl group of spin(8) determines how the gauge bosons interact 
with the elementary fermions, so it would be useful to have a correspondence 
between the elements of the Weyl group and the elements of the Lie algebra. 
Spin(8) is a rank 4 group, so that its Weyl group acts as Euclidean 4-space 
reflections about hyperplanes perpendicular to the 24 Lie algebra root vector 
elements. There is no 1-1 correspondence between the 192 elements of the 
Weyl group and the 24 Lie algebra root vectors. Such a 1-1 correspondence 
exists only for Lie groups of rank 2 or less. Therefore, it is useful to 
decompose spin(8) at the Weyl group level into Lie groups of rank no 
greater than 2. 

$4 x Z 3 is the semidirect product of $2 x Z~, $3, $2 x $2, and the identity. 
Consider that spin(8) naturally decomposes into (Table II): spin(5) = sp(2), 
the gauge group of de Sitter gravitation according to MacDowell and 
Mansouri (1977), with ten infinitesimal generators, each corresponding to 
a graviton, SU(3),  the color force group, with eight infinitesimal generators, 
each corresponding to a gluon; spin(4) = SU(2) x SU(2), which decomposes 
by spontaneous symmetry-breaking into the SU(2) of the weak force, with 
three infinitesimal generators, each corresponding to a massive weak boson; 
and U(1) 4, the maximal torus, with four infinitesimal generators, each 
corresponding to one of the four polarizations of the photon described by 
Leighton (1959). 

The Weyl group of spin(8) can be visualized geometrically by beginning 
with the unique four-dimensional, centrally symmetric, self-dual regular 
polytope called the 24-cell or (3, 4, 3) (Coxeter, 1973). The 24-cell has 24 
vertices and 24 octahedral three-dimensional faces. It can be described in 
quaternionic coordinates {1, i,j, k} by the vertices (+1 • i)/~-2, (+1 +j)/v/-2, 
(• + k)/x/2, (• (+i+ k)/x/2, and (+j:l: k)/x/2. 

To visualize a 24-cell, project it into R 3 with two antipodal octahedra 
centered about the origin, one inside the other. Then the other 22 octahedra 

Table II. 

Number of Dimension 
Weyl group elements Group of group 

$4 x Z~ 192 spin(8) 28 

$2 • Z~ 8 spin(5) = sp(2) 10 
Sa 6 SU(3) 8 
$2 x S 2 4 spin(4) = SU(2) x SU(2) 6 
Identity, maximal torus of spin(8) U(1) 4 4 
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lie between the inner and outer central octahedra. There are six octahedra 
that share a vertex with the inner octahedron and another vertex with the 
outer octahedron, eight octahedra that share a face with the inner octa- 
hedron, and eight octahedra that share a face with the outer octahedron. 

As a 24-cell is self-dual, the 24 points at the centers of  the octahedra 
also form a 24-ce11. The quaternionic coordinates of  the dual 24-cell are 
• 1, • i, • • k and (• 1 + i •  • k)/2, which are the unit integral quaternions 
(Coxeter, 1973). 

Call Aut(24) the group of linear transformations of R 4 leaving the 
24-cell invariant. Let v be a vertex of the 24-ce11. Call r~ a reflection along 
the vertex v if[ rv(v) = - v  and the fixed points of ro constitute a hyperplane 
in R 4. Call such a hyperplane a Weyl hyperplane. Then the Weyl group of  
spin(8) is the subgroup of Aut(24) generated by the r~ for all vertices v of 
the 24-ce11. 

Weyl chambers are defined as the connected components of ~4 into 
which it is divded by all the hyperplanes of  fixed points of all the rv. The 
Weyl group of  spin(8) can be seen to be the group of  reflections that permute 
the Weyl chambers in a simply transitive way (Bourbaki, 1968). 

For spin(8), there are 12 Weyl hyperplanes and 192 Weyl chambers. 
There are eight Weyl chambers for each of  the 24 octahedral faces of the 
24-ce11. The 24 octahedral faces can be seen as four loops of  six octahedral 
faces each (Coxeter, 1973). 

The Weyl group of spin(9) = S 8 x spin(8) is $2 x S 4 X Z 3 = S 2 X Weyl 
group of  spin(8). The 36 root vector vertices of spin(9) are the spin(8) 
24-cell and +1, • +j, and •  of the dual 24-ce11. The four vertices +1, +i, 
+j, and +k  correspond to space-time, with +1 corresponding to time. The 
vertices -1 ,  - i ,  - j ,  and - k  correspond to the four dimensions of S 8 that 
are reduced by the geometric Higgs mechanism for reducing S 8 to S 4. 

The Weyl group of  

F 4 = O P  2 • spin(9) = O P  2 x S 8 x spin(8) 

is $3 x $4 x Z 3 = Sa x Weyl group of  spin(8) = Z3 x Weyl group of  spin(9). 
The 48 root vector vertices of F4 are those of  spin(9) and (+ 1 + i +j + k)/2 
of the dual 24-cell or both the 24-cell and its dual 24-ce11. The eight vertices 
( + l + i + j + k ) / 2 ,  ( + l + i + j - k ) / 2 ,  ( + l + i - j + k ) / 2 ,  ( + l - i + j + k ) / 2 ,  
(+1 - i - j +  k)/2, (+1 - i + j -  k)/2, (+1 + i - j -  k)/2, and (+1 - i - j -  k)/2 
correspond to the electron, red up quark, blue up quark, green up quark, 
red down quark, blue down quark, green down quark, and neutrino. The 
eight vertices (-1 • i •  • k)/2 correspond to the fermion antiparticles. 

The four polarizations of the photon [ U(1 )4] correspond to the common 
Cartan subalgebra of F4, spin(9), and spin(8). 
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Note that the vertices of the 24-cell of spin(8) can be related to the 
vertices of the dual 24-cell by quaternionic right-multiplication by (1 +j)/v/2, 
which takes 1-->(l+j)/x/2, i-->(i+k)/x/2, j-->(-l+j)/v'2, and k ~  
(- i+ k)/x/2. 

Then the 24 infinitesimal generators of spin(5), SU(3), and spin(4) 
correspond to vertices of the 24-cell of spin(8) as follows: 

1. Eight root vectors of spin(5): (-1 + i)/x/2, (-1 + k)/x/2, (+j• i)/x/2, 
and (+j • k)/v/2, which are related to the eight fermion antiparticles 
(-1 + i •177  k)/2. 

2. Six root vectors of SU(3): (+ l - i ) /x /2 ,  (+l•  (-j+i)/x/2, 
and ( - j  • k)/x/2, which are related to the six fermion quarks ( + 1 -  
i+j -k ) /2 ,  (+l - i+j+k) /2 ,  (+1+• (+l+i - j+k) /2 ,  
(+1 - i - j +  k)/2, and (+1 + i - j -  k)/2. 

3. Four Cartan subalgebra elements, two of spin(5) and two of SU(3): 
(+1-j) /x/2,  (+i-k)/q~,  (+l+j)/x/2,  and (+i+k)/x/2, which are 
related to +1, +i, +j, and +k of space-time. 

4. Two root vectors of weak SU(2) of spin(4): (+1 + i)/x/2 and ( - j -  
i)/x/~, which are related to the fermion electron ( + l + i + j +  k)/2 
and neutrino (+1 - i - j  - k)/2. 

5. One Cartan subalgebra element of weak SU(2) of spin(4): ( - 1 +  
j)/V~, which is related to the S 8 Higgs element -1 and produces 
the W ~ 

6. Three Higgs SU(2) elements of spin(4): (-i+k)/x/2, ( -1- j ) /x /2 ,  
and ( - i -  k)/q~, which are related to the S 8 Higgs elements - i ,  - j ,  
and -/~ 

As the eight root vectors of spin(5) are related to all eight fermion 
antiparticles, the eight charged gravitons can carry both electric and color 
charges. 

As the six root vectors of SU(3) are related only to the six quarks, the 
six charged gluons can carry only color charge. 

As the two root vectors of weak SU(2) are related only to the electron 
and the neutrino, the charged W + and W- can carry only electric charge. 

5. GEOMETRY OF SPIN(8) 

Gros sman et al. (1984) have shown that the last Hopf map S 7 -> S 15 _> S 8 
produces a principal fibre bundle (P, 7r, S 8, spin(8)) that corresponds to the 
Yang-Mills equations with gauge group spin(8), base manifold S 8, and 
topological charge 1. 

The 8-sphere S 8=spin(9)/spin(8) is a compact manifold with local 
symmetry group spin(8). The Yang-Mills base manifold S 8 should corre- 
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spond to space-time. As will be seen in Section 10, S 8 can be reduced to 
S 4 to get a space-time of  the right dimensionality. Physical space-time is 
usually considered to be a noncompact manifold such as R 4 rather than the 
compact manifold S 4. However, Yang-Mills over a four-dimensional base 
manifold is conformally invariant, so that every solution of Yang-Mills 
over S 4 pulls back to a finite-energy solution over R 4 by the conformal 
identification R 4= S 4 -  {oo} (Uhlenbeck, 1985). Note that both R" and S" 
have spin(n) as local symmetry group. The compact base manifold S 4 has 
a finite volume and other geometrical properties that are useful in the 
calculations of  spin(8) gauge field theory. Similar use of compact manifolds 
rather than the projectively related noncompact manifolds was made by 
Wyler (1971) and discussed by Gilmore (1972). 

As described in Besse (1978), the Grassmannian manifold of oriented 
2-planes in R 1~ denoted by G~lo=spin(lO)/spin(8)xS 1, where S 1 =  

spin(2), is the manifold of oriented geodesics of S 9, denoted by C2~S 9, 
because the geodesics of  S 9 are of length 2~-. As R P  9 is covered twofold 
by S 9, G2+,10 is also the manifold or oriented geodesics of  R P  9, denoted by 
C~RP 9, because the geodesics of R P  9 a r e  of  length 7r. 

+ 
G2,10 is isomorphic to a bounded complex homogeneous domain of  

type IV8, denoted by D 8. If  D 8 is taken to be equivalent to C2~S 9, the Silov 
boundary of  D 8 is Q8 = S 7 x S 1. If  D 8 is taken to be equivalent to  C~rRP 9, 
the Silov boundary of D 8 is Q8 = $7 x RP 1 (Hua, 1963). 

Q8 is parallelizable and compact, and is used in Section 6 as the 
manifold for half-spinor spaces for spin(8) gauge field theory. 

We have already seen that the Yang-Mills gauge group spin(8) corre- 
sponds at the Weyl group level to the physical gauge groups spin(5) of de 
Sitter gravitation, SU(3) of  the color force, spin(4), which is reduced to 
SU(2) with three massive vector bosons by geometric spontaneous symmetry 
breaking, and U ( 1 )  4 of electromagnetism. 

To see the relationship of the Weyl group decomposition of'spin(8) to 
the group structure of spin(8), follow Porteous (1981) and recall that 
spin(8) = S 7 • S 7 x G2: 

1. Use the Hopf  fibration S 3 ~ S 7 ~ S 4, 

spin(8) -> S 4 x S 3 x S 4 x S 3 X G 2 

2. Use the map G2-> S f x  SU(3), 

spin(8) --> SU(3) x (S 4 x S 6) x (S 3 • S 3) x S 4 

3. Identify SU(3) with the color force (Giinaydin, 1976). 
4. Identify $4• S 6 with spin(5)= sp(2), shown by MacDowell and 

Mansouri (1977) to be the gauge group of de Sitter gravitation. S 4 
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should correspond to the translations of  R 4 of which S 4 is a compac- 
tification. S 6, whose almost complex structure is based on pairs of 
imaginary quaternions (Kobayashi and Nomizu, 1963, 1969), should 
correspond to the Lorentz transformations of  spin(4) = S 3 x S s, 

spin(8) ~ SU(3) x spin(5) x (S 3 x S 3) x S 4 

5. Identify S3xSS=sp in (4 )  with the weak force and the Higgs 
mechanism, 

spin(8) ~ SU(3) x spin(5) x spin(4) x S 4 

6. Identify S 4 with U ( 1 )  4 by identifying S 4 with the translations of  •4 
of  which S 4 is a compactification. 

spin(8) ~ spin(5) x SU(3) x spin(4) x U ( ( 1 )  4 

The structure of  spin(8) = S 7 x S 7 x G2 is such that the Lie algebra of 
spin(8) is generated by the infinitesimal generators of S 7 and their Lie 
algebra commutators  IS 7, S 7] (Giinaydin and Giirsey, 1973). The decompo- 
sition of spin(8) can be written in terms of the basis for spin(8) as the 
bivector algebra of the 28= 256-dimensional Clifford algebra of  •8, writing 
16 x 16 matrices as direct products of  two Pauli matrices pi and ~'j and one 
Dirac matrix 3't,, which basis was developed by Chisholm and Farwell (1984) 
(Table I I I ) :  

~o(10 0) ~(010) ' ~(0 o~) ~(; 
,o(; ~ 0 ,~(01 ;) ,~=(0 o~) ~(; 

lol  0 
~/o -- 

0 1 

0 0 

(i~ ~ o (! 
0 0 - - 0 0 

(i ~176 :)(i il 
0 i -~ 0 0 - 

T3 = i 0 , T4 = 0 0 

0 0 - 1  0 

~) 
~) 
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Table IIL 

Scalar 
po'ro Yo 

Vectors 
pl'r3y~ 

pl'r3Y2 
p1~'3~3 
pl r3 ~t4 

Bivectors 
P0TO~/12 
P0r0723 
po ro Y34 

PoroY14 

Por 
poq'oY24 

PiT2Yli  

pl'r2Y2i 
Pl r2 Y3 i 

Pl r2 Y4 i 

p2"r2 yoi 
P2rlTo i 
Por3Yo 

Pl%T5 i 
p1~175i 
p3~'oy5 

P3roYl 
P3~oT2 
P3~oT3 
PZ%Y4 

Plr3Y5 
Po~l YO i 
Po rz Yo i 
p2~'3 TO 

Poro751 
po'roY52 
Po~o753 
Po~o754 

de Sitter gravitation--spin(5) 

Pl ~l Yl i 

P171y2i 
Pl rx Y3 i 
px ~'l y4 i 

Color SU(3) 

Higgs SU(2) part of spin(4) 

Massive weak boson SU(2) part of spin(4) 

U(1) 4 electromagnetism 

F 1 
FE 
F3 
F4 

FIF2 
F2F3 
F3F4 
F4FI 
F1F3 
F2F4 

F f6  
FzF6 
F~F6 
FaF6 

FsF6 
FsF7 
F6F7 

FsF6 
FsF7 
FsFs 

F1Fs 
F2Fs 
F3Fs 
F4Fs 

116 

F5 
I" 6 
F7 
Fs 

F~F5 
F2F5 
F3Fs 
F4Fs 

F1F7 
F2F7 
F3F7 
F4F7 

/'16 = PO~OTO 

F1 = p l r3ya ,  F2 = Pl ~'3Yz, F3 = pl"r3Y3 

F4 = PlT3T4, F5 = pl~'3ys, F 6 = P o Y l Y o  i 

F7 = Po~'2yoi, F8 = p27"3 To, F 9 = p37"3 To 

The d e c o m p o s i t i o n  o f  the bivectors  o f  the C h i s o l m - F a r w e l l  represen ta -  
t ion o f  spin(8)  is more  pa r t i cu la r ly  desc r ibed  as fol lows 

D e  S i t t e r  G r a v i t a t i o n - - S p i n ( 5 ) .  As p0 = To = 1, the  C h i s o l m - F a r w e l l  
b ivec tors  are  ju s t  the six b ivec tors  { y ~ }  o f  spin(4) ,  the  cover ing g roup  o f  
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the Lorentz group, and the four pseudovectors {Ys.} could correspond to 
the translations in four-dimensional space-time. 

Color SU(3). {plr2y~i, p~'2y2i, plr2Y3i, p~'23'4i} can be identified with 
{Yl, Y2, Y3, 3'4} by projection into the hyperspace orthogonal to p~r2 and 
ignoring the factor i. By the same process, {p~r~yli, plzly2i, pl'r13'3i, pl~'lyai} 
can be identified with {rly~, "qY2, ZlY3, r~y4}. By identifying {Yl, 3'2, 3'3, 3'4} 
with H and {z13'1, ~'1Y2, r~3"3, fly4} with ~'IH, and then identifying Hq3r~H 
with the octonions O, the eight bivectors {p~rzyli, Plr23"2i, plr23"3i, plrzy4i, 
pl'gl~r pl'F13'2i, p1'I'13'3i) plrl"y4 i} are identified with O. 

The adjoint representation of SU(n) is a subalgebra of spin(n 2-1)  
(Cahn, 1984). Therefore the eight-dimensional adjoint representation of 
SU(3) is a subalgebra of spin(8). In the eight-dimensional representation 
of spin(8), considered as actions of spin(8), on O, every action of spin(8) 
can be represented by octonion multiplication (G/inaydin and Giirsey, 1973, 
Appendix C). Therefore the eight-dimensional adjoint representation of 
SU(3) should be representable by the octonions O. 

Higgs SU(2) Part of Spin(4). {P2rli, p2r2i, r3} can be identified with 
one of the SU(2)'s in spin (4) by projection into the hyperspace orthogonal 
to p2 and ignoring the factor i. By a similar process, the vectors {r~i, r2i, 
p2ra} will also correspond to {rl, r2, r3} and can be paired with the bivectors 
{p2rli, P2r2i, z3} as described in Section 10. 

Massive Weak Boson SU(2) Part of Spin(4). {plr23"si, p~r13"si, p3ro3"5} 
can be identified with the other SU(2) in spin(4) by projection into the 
hyperspace orthogonal to PI, P3, and 3'5; ignoring the factor i; and identifying 
ro with z3 because ro = *z3 in the Pauli algebra. The rx and ~'2 elements 
would correspond to the charged weak bosons. The ~'o = *r3 element would 
correspond to the neutral weak boson, By a similar process, the vector 
{Plr33's} will also correspond to ro = *r3 and can be paired with the bivector 
{/93"/'03'5 } as described in Section 10. 

Electrornagnetismm U(1)4. {P3 ~/g} can be identified with translations 
in four-dimensional space-time by projection into the hyperspace orthogonal 
to p3. 

The Chisolm-Farwell representation is such that de Sitter spin(5) 
gravitation sits inside spin(8) in a substantially trivial manner. Explicit 
calculation of commutator structure constants for the 16• 16 bivector 
matrices should give interesting topological information about how the 
other components SU(3), spin(4), and U(1) 4 fit together. 

The 

spin(8) = G2 • S 7 x S 7 = SU(3) x S 6 • S 4 x S 3 • S 1 • S 2 • S 4 
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decomposition is such that SU(3) sits inside spin(8) in a substantially trivial 
manner. Further analysis of that decomposition might be useful, particularly 
with respect to SU(3). 

6. FERMION MATFER FIELDS AND QS= QS+OQS - 

The principal fibre bundle (P, 7r, S 8, spin(8)) gives a physically realistic 
gauge group spin(8) and a compact base manifold S s that will be shown 
to be reducible to S 4 for a physically realistic space-time, so that we have 
gauge forces acting in space-time. However, the principal fibre bundle alone 
does not give any matter fields upon which the gauge forces act. To get the 
matter fields, it is necessary to construct an associated bundle whose fibres 
correspond to the spinor representation of spin(8). 

The Clifford algebra of •8 has dimension 

28= 16• 16=256= 1 + 8 + 2 8 + 5 6 + 7 0 + 5 6 + 2 8 + 8 + 1  

The 28-dimensional bivector space corresponds to the adjoint representation 
of spin(8). The eight-dimensional vector space corresponds to the vector 
representation. To get the spinor representation, imbed spin(8) in a 16 • 16 
matrix representation of the whole Clifford algebra. A minimal ideal upon 
which spin(8) acts is then a 16 • 16 matrix with only the first column nonzero, 
or equivalently, a 16-dimensional column vector. The 16-dimensional 
column vector can be taken to be the spinor representation space E8. It is 
reducible to two eight-dimensional mirror image irreducible half-spinor 
spaces ~8 and ~8_ that respectively lie in the even and odd subspaces of 
the spin(8) Clifford algebra. E 8 --E 8+,~,c~y 8_ is noncompact and has infinite 
volume. For the purposes of spin(8) gauge field theory calculations it is 
necessary to use a corresponding compact spinor space as done by Wyler 
(1971) and discussed by Gilmore (1972). 

As E 8 and E 8 _ are mirror images of each other, it is natural to consider 
~8 to be a twofold covering space of ~8 ~ Zs+ ~ Zs. 

~8 is an eight-dimensional space that is isomorphic to R 8 and has 
octonionic structure. Z 8 is parallelizable in the sense that there exist eight 
independent tangent vector fields, which are linearly independent at every 
point. Parallelizability is physically important because, after choice of any 
point of ~ as origin, each of the eight independent vector fields then 
corresponds to a basis vector of y8, and each basis vector can then be taken 
to correspond to one of the eight leptons and quarks of the first-generation 
particles (for Es+) or antiparticles (for E8_). The octonionic structure classifies 
the leptons and quarks according to the scheme of Harari (1979), Shupe 
(1979), and Adler (1980). 
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The compact space that corresponds to E s should also be eight- 
dimensional and parallelizable with octonionic structure. The most obvious 
candidate, RP 8 covered by S 8, is not suitable because it is not parallelizable. 

However, RP 1 covered by S 1 is parallelizable and S 7 is also paralleliz- 
able. S 7 corresponds to the imaginary octonions and RP 1 can be taken to 
correspond to the real axis, so that S 7 x RP ~ covered by $7• S ~ is the 
corresponding compact structure to Es~ covered by E 8. 

Denote by Q8 = S7 x ~p1 the compact space corresponding to E8+, and 
denote by Qs_ ~ S7x •p1 the compact space corresponding to ~8_. Denote 
by Qs ~ Qs+O ) Qs_ ~. S 7 x S 1 the twofold covering compact space correspond- 
ing to the twofold covering spinor space ~8~ Es+~)Es_. 

Q8= S7• is the Silov boundary of an irreducible symmetric 
D~ = spin(10)/spin(8) • U(1) bounded domain of type IVs, denoted by 8 

(Hua, 1963). D 8 has local symmetries of spin(8) and U(1) (Gilmore, 1974; 
G~irsey and Tze, 1980), so that the spin(8) gauge group acts naturally on 
D 8 as well as its Silov boundary Q8. The U(1) local symmetry corresponds 
to the complex structure of D s, which has eight complex dimensions. 

Note that for spin(2k) the mirror image left-handed and right-handed 
elementary (half spinor representations have dimension 2 k-1. For spin(2 • 
4)=spin(8),  24-1=23=8, so the elementary spinor representations of 
spin(8) each have the same dimension as the vector space on which spin(8) 
acts. Further, the 1 + 3 + 3 + 1 graded structure of each elementary spinor 
representation is compatible with the octonionic structure of the vector 
space on which spin(8) acts. Identification of the pseudoscalar of an elemen- 
tary spinor representation with an imaginary octonion, say 07, of the vector 
representation gives an isomorphism between the spinor and vector rep- 
resentations of spin(8). Such an isomorphism is unique to spin(8), whose 
Dynkin diagram is 

.z. 
Consider the left-handed (hal0 spinor space Qs+. As one of the (half) 

spinor representation spaces of spin(8), it is isomorphic to both the other 
(half) spinor representation space Qs_ and the vector representation space 
of spin(8). Since the vector representation space of spin(8) is just the 
octonions O, the spin(8) isomorphisms show the equivalence of (half) spinor 
representations of spin(8), which are naturally written as triples of Pauli 
matrices, with the vector representation of spin(8), which is naturally written 
in terms of octonions (Giinaydin and Giirsey, 1973). 

Note that octonion multiplication can be defined in terms of a basis 
{1, O1, 02,  03,  04,  05,  06,  07} as follows: 
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04 

06 ~ 05 01 
Fig. 1. 

Begin with a triangle considered as the null set, three vertices, three 
edges, and the whole triangle (Figure 1). Identify, as shown in Figure 1, 1 
with the null set; 04,  05,  and 0 6  with the vertices; O1, 02 ,  and 03  with 
the edges; and 07  with the whole triangle. Then the octonionic product 
with the null set is the identity; the octonionic product of  two vertices is 
the edge between them, with a minus sign if the order of the vertices is 
clockwise and a plus sign if counterclockwise; the octonionic product of 
two edges is the third edge, with a plus sign if the order of the edges is 
clockwise and a minus sign if counterclockwise; the octonionic product of  
an edge and an adjacent vertex is the other adjacent vertex, with a plus 
sign if clockwise and a minus sign if counterclockwise; and the octonionic 
product of  a vertex times the whole triangle is the opposite edge. 

Note that it is natural to identify the electrically neutral massless 
neutrino with the null set, the charge - 1 / 3  down quarks with the vertices, 
the charge +2/3  up quarks with the edges, and the charge -1  electron with 
the whole triangle. 

Q8 can be given a basis as a (half) spinor representation space in terms 
of standard spinors U and D, or, equivalently, in terms of octonions {1, 
O1, 02,  03 ,  04,  05,  06 ,  O7}, as shown in Table 1V. 

Table IV. 

Fermion Triple of spinors Octonion 

Electron U| U| U 07 
Green up quark D| U| U 03 
Blue up quark U | D |  U 02  
Red up quark U@ U | D O1 
Green down quark U | D | D 06 
Blue down quark D|  U |  05 
Red down quark D|  D |  U 04  
Neutrino D| D| D 1 
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Similarly, the right-handed mirror image eight-dimensional spinor 
space Qs_ corresponds to the eight elementary first-generation antiparticles: 
positron; antigreen, antiblue, and antired up antiquarks; antigreen, antiblue, 
and antired down antiquarks; and antineutrino. 

The massless neutrino and antineutrino travel at the speed of light and 
cannot change their observed helicity, so that all neutrinos should be 
observed to be left-handed and all antineutrinos to be right-handed. The 
other fermions are massive and travel at less than the speed of light, so that 
their observed helicities can be of either type, depending on their velocities 
relative to observers. 

The second generation of fermions should correspond to action of 
spin(8) on pairs of octonions (Smith, 1985). The octonion multiplication 
product is used to relate pairs of octonions to octonions (Giinaydin and 
Giirsey, 1973; Hasiewicz and Kwasniewski, 1985). 

The third generation of fermions should correspond to the action of 
spin(8) on triples of octonions (Smith, 1985). The octonion triple product 
of Whitehead (1962) is used to relate triples of octonions to octonions. 

As there are no similar products of n-tuples of octonions for n > 3 
(Eckmann, 1968; Whitehead, 1962), the nth-order half-spinor representa- 
tions of spin(8) should not correspond to physically observable particles 
for n > 3. There should be no leptons or quarks beyond the third generation. 

The same conclusion is reached if the leptons and quarks of the first, 
second, and third generations are identified, as in Section 3, with E6,  ET, 

and E8 respectively, based o n  F 4 = spin(8) • S 8 • O P  2 describing the action 
of the gauge group spin(8) acting within the space-time S 8 on the fermions 
of OP 2, and; 

E~ = F4 x M3(O)o 

with the M3(O)o corresponding to the one imaginary generator of the 
complex numbers; 

Ee = .&  x s ~ x M~(O)o x m3(O)o x m3(O)o 

with two of the M3(O)o corresponding to the two imaginary generators of 
the quaternions; and 

E~ = F, x c~ x M3(O)o x M~(O)o x M~(O)o x M~(O)o x M~(O)o 

x M~(O)o  x M~(O)o  

with three of the M3(O)o corresponding to the three imaginary generators 
of the octonions. 
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7. ACTION OF GAUGE BOSONS ON ELEMENTARY FERMIONS 

The photons are Abelian elements of U(1), which is identical with its 
Cartan subalgebra. The Caftan subalgebra corresponds to the identity of 
the Weyl group. Therefore the action of photons on elementary fermions 
is described by the identity automorphism of octonions. Photons do not 
change the nature of elementary fermions, or, to put it another way, photons 
carry neither electric nor color charge. 

The massive weak bosons IV + and W- are the two Lie algebra root 
vectors of SU(2) and W ~ is the Cartan subalgebra. IV + and W- correspond 
to the Weyl group $2, so their action on the elementary fermions is described 
by the octonion automorphism 

{07, 01, 02, 03},->{1, 04, 05, 06} 

W + and W- carry one unit of electric charge, so that they can interchange 
neutrinos (1) with electrons (07) or interchange down quarks (04, 05, or 
06) with up quarks (O1, 02, or 03). 

The six gluons gl-1, . . . ,  gl-6 are the six Lie algebra root vectors of 
SU(3), and the two gluons gl-7 and gl-8 are the Cartan subalgebra, gl- 
1, . . . ,  gl-6 correspond to the Weyl group $3, so their action on the elemen- 
tary fermions is described by the octonion automorphisms 

{O1, 04}<-->{02, 05} 
{02, 05}<-->{03, O6} 
{03, O6}*-~{O1, 04} 

gl-1, . . . ,  gl-6 can carry only color charge. 
The eight gravitons gr-1, . . . ,  gr-8 are the eight Lie algebra root vectors 

of Sp(2), and the two gravitons gr-9 and gr-10 are the Cargan subalgebra. 
gr-1, . . . ,  gr-8 correspond to the Weyl group $2 x Z 2, so their action on the 
elementary fermions is described by the octonion automorphisms 

{07, 01, 02, 
{07, O1, 02, 
{O7, O1, O2, 

03}~--~{1, 04, 05, 06) 
03}~--~{06, 05, 04, 1} 
03}*->{05, 06, 1, 04} 

Note that the composition of the three automorphisms gives 
{07, O1, 02, 03}*->{04, 1, 06, O5}, and the gravitons are the only gauge 
bosons that can change leptons into quarks and quarks into leptons, gr-1 
and gr-2 can carry only electric charge, but gr-3, . . . ,  gr-8 can carry both 
electric and color charge. 

The following list summarizes the action of charged gauge bosons on 
the elementary fermion particles of the first generation. The action on 
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antiparticles and higher generation particles can be deduced from the action 
on first-generation particles. 

W§ {07, O1, 02, O3}-->{1, 04, 05, 06} 
W-: {1, 04, 05, 06}->{07, O1, 02, 03} 

gl-l: {01, 04} -~ {02, 05} 
gl-2: {01, 04}-->{03, 06} 
gl-3: {02, 05}--> {03, 06} 
gl-4: {02, 05}-->{01, 04} 
gl-5: {03, 06}~ {01, 04} 
gl-6: {03, 06}->{02, 05} 

gr-l: {07, 01, 02, 03}-->{1, 04, 05, 06} 
gr-2: {1, 04, 05, 06}~{07,  01, 02, 03} 
gr-3: {07, 01, 02, 03}-->{06, 05, 04, 1} 
gr-4: {06, 05, 04, 1}-->{07, 01, 02, 03} 
gr-5: {07, 01, 02, 03}->{05, 06, 1, 04} 
gr-6: {05, 06, 1, 04}-->{07, 01, 02, 03} 
gr-7: {07, 01, 02, 03}-->{04, 1, 06, 05} 
gr-8: {04, 1, 06, 05}-->{07, 01, 02, 03} 

8. QUARK MASS 

What is the ratio of the mass of a down quark to the mass of an electron, 
ma/me? According to the Weyl group decomposition of spin(8), 18 
infinitesimal generators correspond to photons, weak bosons, and gluons, 
and 10 correspond to gravitons. The ma/me mass ratio should be made up 
of two parts: the ratio of "expansion factors" due to the photon, weak 
boson, and gluon interactions on the down quark and the electron; and the 
ratio of the numbers of gravitons that interact with the down quark and 
the electron. 

Consider a red down quark, 04. By gluon interactions, 04 can be 
taken into 05 and 06. By weak boson interactions, it can be taken into 
O1, 02, and 03. By the octonionic product, 04 x 06 • 05 = 07 and 04 x 
02 x 06---1. Therefore the red down quark (similarly, any down quark) 
can be "expanded" by a factor of the volume of Qs+ = V(Q8). 

Consider an electron, 07. By photon, weak boson, and gluon interac- 
tions, 07 can only be taken into 1, the massless neutrino. By the octonion 
product, 07 and 1 can only be taken into the subspace of the octonions 
spanned by 07 and 1. Therefore the electron cannot be "expanded" at all. 
Its "expansion factor" is just 1. 
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The ratio of the down quark expansion factor to the electron expansion 
factor is just V(Q8)/1 = V(QS+) --- ~5/3 (Hua, 1963). 

The ten gravitons correspond to the ten infinitesimal generators of 
spin(5) = Sp(2). Two of them are in the Cartan subalgebra. Six of them 
carry color charge, and may therefore be considered as corresponding to 
quarks. The remaining two carry no color charge, but may carry electric 
charge and so may be considered as corresponding to electrons. One takes 
the electron into itself, and the other can only take the first-generation 
electron into the massless electron neutrino. Therefore only the one graviton 
should correspond to the mass of the first-generation electron. 

The graviton number ratio of the down quark to the first-generation 
electron is therefore 6/1 = 6. 

Therefore the ratio of the down quark constituent mass to the electron 
mass is m d / m e  =6V(Q 8) = 27r5=612.03937. If the electron mass is me = 
0.5110034MeV, then the constituent mass of the down quark is rna = 

312.7542 MeV. 
As the up quarks correspond to O1, 02, and 03, which are isomorphic 

to 04, 05, and 06 of the down quarks, the up quarks and down quarks 
have the same mass mu = ma = 3t2.7542 MeV. 

9. FERMION M A S S E S - - S E C O N D  AND THIRD GENERATIONS 

The second-generation fermion particles correspond to pairs of 
octonions. There are 82= 64 such pairs. The pair (1, 1) corresponds to the 
/x-neutrino. The pairs (1, O7), (07, 1), and (07, 07) correspond to the/x. 
Compare the symmetries of the /x pairs to the symmetries of the first- 
generation fermion particles. The pair (07, 07) should correspond to the 
07 electron. The other two /x pairs have a symmetry group $2, which is 
one-third the size of the color symmetry group $3, which gives the up and 
down quarks their mass of 312.7542 MeV. Therefore the mass of the /x 
should be the sum of the electron mass and one-third of the up or  down 
quark mass, and rn~ = 104.7624 MeV. 

Note that all pairs correspond to the/x and the/x-neutrino are colorless. 
The strange quark corresponds to the nine pairs (1, O4), (1, O5), 

(1, O6), (04, 1), (05, 1), (06, 1), (04, O4), (05, O5), and (06, 06). Its 
mass should come from two sources: the other two-thirds of the down quark 
mass that is not associated with the/x mass, or 208.5028 MeV; and the /x 
mass times the graviton factor. Unlike the first-generation situation, massive 
second- and third-generation leptons can be taken, by both of the colorless 
gravitons that may carry electric charge, into massive particles. Therefore 
the graviton factor for the second and third generations is 6/2 = 3. Therefore 
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the /.~ mass times the graviton factor 3 is 314.2872 MeV, and the strange 
quark constituent mass is ms = 522.7900 MeV. 

The red strange quark is defined as the three pairs (1, O4), (04, 1), 
and (O4, O4), because 04 is the red down quark. 

The blue strange quarks correspond to the three pairs involving 05, 
and the green strange quarks correspond to the three pairs involving 06. 

The charm quark corresponds to the other 51 pairs. Its mass should 
also come from two sources: the other two-thirds of the up quark mass that 
is not associated with the/z mass, or 208.5028 MeV; and 51/9 times the/z 
part of the strange quark mass, or 1780.9608 MeV. Therefore the charm 
quark constituent mass is mc = 1.9894636 GeV. 

The red charm quark is defined as the following 17 pairs: (O1, 1), 
(1, O1), and (O1, O1), because O1 is the red up quark; (02, O3), (03, O2), 
(07, O4), and (04, O7), because the octonion product of the elements of 
each such pair is +O1, the red up quark; (03, O5), (05, O3), (06, O2), 
(02, O6), (06, O5), (05, O6), (07, O1), and (O1, O7), because the 
octonion product of the elements of each such pair is • 04, the red down 
quark; and (O1, 04) and (04, O1), because both elements of each such 
pair are red up or down quarks. 

The blue and green charm quarks are defined similarly. 
The third-generation fermion particles correspond to triples of 

octonions. There are 83= 512 such triples. The triple (1, 1, 1) corresponds 
to the r-neutrino. The other seven triples involving only 1 and 07 correspond 
to the tauon. The symmetry of the seven tauon triples is the same as the 
symmetry of the three down quarks, the three up quarks, and the electron, 
so the tauon mass should be the same as the sum of the masses of the 
first-generation massive fermion particles. Therefore the tauon mass is 
rata u --- 1.877036 GeV. 

Note that all triples correspond to the ~- and the r-neutrino are colorless. 
The bottom quark corresponds to 21 triples. The are triples of the form 

(1, 1, O4), (1, 04, 1), (04, 1, 1), (04, 04, 1), (04, 1, O4), (1, 04, O4), and 
(04, 04, O4), and the similar triples for 1 and 05 and for 1 and 06. The 
bottom quark constituent mass should be the tauon mass times the graviton 
factor 3, or m b =  5.631108 GeV, 

The red bottom quark is defined as the seven triples (1, 1, O4), 
(1, O4,1), (O4,1,1), (04, O4,1), (O4,1, O4), (1, 04, O4), and 
(04, 04, O4), because' 04 is the red down quark. 

The blue bottom quarks correspond to the seven triples involving 05, 
and the green bottom quarks correspond to the seven triples involving 06. 

The truth quark corresponds to the remaining 483 triples, so the 
constituent mass of the truth quark is 483/21 times the bottom quark mass, 
or rnt = 129.51548 GeV. 
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The red truth quark is defined as the following 161 triples: 

(1, 1, 01), (1, 01, 1), (01, 1, 1), (01, 01, 1) 
(01, 1, 01), (1, 01, 01), (01, 01, 01) 

because 01 is the red up quark; 

(07, 02, 06), (07, 06, 02), (07, 01, 07) 
(07, 07, 01), (07, 03, 05), (07, 03, 05) 

(07, 1, 04), (07, 04, 1) 

(06, 04, O3), (06, 03, O4), (06, 06, O1) 
(06, O1, O6), (06, 02, O7), (06, 07, 02) 

(06, 1, 05), (06, 05, 1) 

(05, 04, O2), (05, 02, O4), (05, 05, O1) 
(05, O1, O5), (05, 03, O7), (05, 07, 03) 

(05, 1, 06), (05, 06, 1) 

(04, 06, 05), (04, 05, 06), (04, 04, 01) 
(04, 01, 04), (04, 02, 03), (04, 03 02) 

(04, 1, 07), (04, 07, 1) 

(03, 06, O4), (03, 04, O6), (03, 03, O1) 
(03, O1, O3), (03, 05, O7), (03, 07, 05) 

(03, 1, 02), (03, 02, 1) 

(02, 04, 05), (02, 05, 04), (02, 02, 01) 
(02, 01, 02), (02, 06, 07), (02, 07, 06) 

(02, 1, O3), (02, 03, 1) 

(01, 07, 07), (01, 06, 06), (01, 05, 05) 
(01, 04, 04), (01, 03, 03), (01, 02, 02) 

(1, 07, 04), (1, 04, 07), (1, 06, 05) 
(1, 05, 06), (1, 03, 02), (1, 02, 03) 

because the octonion triple 
(Eckmann, 1968; Whitehead, 
:cO1, the red up quark; 

(07, 05, 06), 
(07, 07, 04), 

(07, 

(06, 04, 06), 
(06, O1, O3), 

(06, 

products defined by xyz=x((x-ly)(x-lz)) 
1962) of the elements of each such triple is 

(07, 06, O5), (07, 04, 07) 
(07, 03, O2), (07, 03, 02) 
1, 01), (07, 01, 1) 

(06, 06, O4), (06, 03, O1) 
(06, 05, O7), (06, 07, 05) 
1, 02), (06, 02, 1) 
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(05, 04, O5), (05, 05, O4), (05, 02, O1) 
(05, O1, O2), (05, 06, O7), (05, 07, 06) 

(05, 1, 03), (05, 03, 1) 
(04, 07, O7), (04, 06, O6), (04, 05, 05) 
(04, 03, 03), (04, 02, 02), (04, 01, 01) 
(03, 06, 01), (03, 01, 06), (03, 03, 04) 
(03, 04, O3), (03, 02, O7), (03, 07, 02) 

(03, 1, 05), (03, 05, 1) 
(02, 01, 05), (02, 05, 01), (02, 02, 04) 
(02, 04, O2), (02, 03, O7), (O2, 07, 03) 

(02, 1, 06), (02, 06, 1) 
(01, 06, O3), (01, 03, O6), (01, 05, 02) 
(01, 02, 05), (01, 04, 01), (01, 01, 04) 

(O1, 1, O7), (01, 07, 1) 
(1, 07, O1), (1, O1, O7), (1, 06, 02) 
(1, 02, O6), (1, 03, O5), (1, 05, 03) 

because the octonion triple product defined by 
(Eckmann, 1968; Whitehead 1962) of the elements 
• 04, the red down quark; 

(07, 04, 04), (07, 01, 01) 

xyz = X ( ( x - l y ) ( x - I z ) )  

of each such triple is 

(04, 06, O5), (04, 05, O6), (04, 02, 03) 
(04, 03, O2), (04, 04, O1), (04, O1, 04) 

(04, 1, 01), (04, 01, 1) 
(03, 02, O4), (03, 04, 02) 
(02, 03, O4), (02, 04, 03) 
(O1, O1, O7), (O1, 07, O1) 

(01, 1, 04), (01, 04, 1) 
(1, 04, 01), (1, 01, 04) 

because although the octonion triple product defined by x y z =  
x ( ( x - l y ) ( x - l z ) )  (Eckmann, 1968; Whitehead, 1962) of the elements of each 
such triple is colorless +07, the dominant elements are 04 or O1; and 

(07, 04, 01), (07, 01, 04) 
(06, 01, 05), (06, 05, 01) 
(05, 01, 06), (05, 06, 01) 
(04, 01, 07), (04, 07, 01) 
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(O1, 06, O5), (O1, 06, O5), (O1, 02, 03) 
(O1, 02, O3), (O1, 04, O7), (O1, 07, 04) 

because although the octonion triple product defined by xyz= 
x((x-ly)(x-lz)) (Eckmann, 1968; Whitehead, 1962) of the elements of each 
such triple is colorless +1, the dominant elements are 04 or O1. 

The blue and green truth quarks are defined similarly. 
Are there any more quarks and leptons than those in the first three- 

generations? If so, an extension of these calculations (Smith, 1985) predicts 
that the masses of the heavy leptons of the fourth, fifth, and sixth generations 
should be under about 8 GeV and that the masses of the down-type quarks 
of those generations should be under about 23 GeV. However, in June 1984 
it was reported that DESY has looked at electron-positron collisions up to 
45 GeV and found no such new heavy leptons or quark-antiquark pairs 
[Scientific American 250(6), 80 (1984)]. As such experiments should have 
found any new heavy leptons under 8 GeV and any new quarks under 
22.5 GeV, there seem to be no fourth, fifth, or sixth generations of fermions 
and probably no generations other than the first three. 

Spin(8) gauge field theory indicates that this should be the case. To 
get the correspondence between the pairs of octonions of the second-order 
half-spinor representation of spin(8) and the second-generation leptons and 
quarks, the octonion multiplication product was used to relate pairs of 
octonions to octonions. To get the correspondence between the triples of 
octonions and the third-generation leptons and quarks, the octonion triple 
product of Whitehead (1962) was used to relate triples of octonions to 
octonions. As there are no similar products of n-tuples of octonions for 
n > 3 (Eckmann, 1968; Whithead, 1962), the nth-order half-spinor rep- 
resentations of spin(8) should not correspond to physically observable 
particles for n > 3. There should be no leptons or quarks beyond the third 
generation. 

The same conclusion is reached if the leptons and quarks of the first, 
second, and third generations are identified, as in Section 3, with E6, ET, 
and Es, respectively, based on F4 = spin(8) x S s x OP 2 describing the action 
of the gauge group spin(8) acting within the space-time S s on the fermions 
of OP 2, and 

E6 = F4 x Ms(O)o 

with the Ms(O)o corresponding to the one imaginary generator of the 
complex numbers; 

E7 = F4 • S 3 • M3(0)o • M d O ) o  • M d O ) o  

with two of the Ms(O)o corresponding to the two imaginary generators of 
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the quaternions; and 

E8 = F4x G2x M3(O)o x M~(O)o x M3(O)o x M3(O)o x M3(O)o 

x M3(O)o x M3(O)o 

with three of the M3(O)o corresponding to the three imaginary generators 
of the octonions. 

10. GEOMETRIC HIGGS REDUCTION OF S s 
BASE M A N I F O L D  TO S 4 

Mayer (1981a, b) has described a geometric Higgs mechanism that he 
calls "fiber-flipping" that should be useful for reducing the spin(8) Yang- 
Mills gauge field theory over S 8 to a Yang-Mills-Higgs theory over S 4. 
Therefore, we should get only a physically realistic S 4 space-time base 
manifold, but also massive SU(2) weak vector bosons. 

To use the notation of Mayer (1981a, b), let the gauge group G = spin(8) 
with Yang-Mills base manifold E = S 8 of dimension 4 +  k, with k = 4 .  The 
desired four-dimensional base manifold is M = S 4. Using the geometric 
decomposition 

spin(8) = S 7 x S 7 x G 2 : S 3 x S 1 x S 2 x S 4 x S 4 x S 6 x SU(3) 

described in Section 5, let 

H = S  2xS 4xS 4x G2=S 2xS 4xS 4XS 6xSU(3) 

Although H is not a subgroup of G as contemplated by Mayer (1981), 
G~ H is well-defined. H is 24-dimensional, and G~ H has dimension k = 4 = 
dim E - d i m  M. Further, the Lie algebra of G = spin(8) can be split such 
that G = H + G~ H. 

G~ H = S 3 x S 1. In  terms of the Chisolm-Farwell basis for the bivectors 
of the 16 x 16 spin(8) Clifford algebra, G / H  should correspond to 

S 3 = {p2'r2~/o i, p2q'l 3to i, po'r3 ~/0} 

= {FsF6,  Fs ,  r 7 ,  F6,  F7} 

= Higgs SU(2) part of spin(4) component of spin(8) 

plus 

S 1 _____ {p3"i'0~/5} 

= {r5I'8} 
= neutral part of massive weak boson SU(2) 

part of spin(4) component of spin(8) 
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The physical base manifold corresponds to space-time, and is usually 
taken to be R 4. However,  Yang-Mills structure over the compact  base 
manifold S 4 is equivalent by the conformal identification R4= S4-{oo} 
(Uhlenbeck, 1985). Prior to dimensional reduction to S 4, the base manifold 
of  spin(8) gauge field theory is S 8. For spin(8) Gauge field theory, the 
compact  base manifold S 8 is considered to be equivalent to R 8 = S 8 -  {oo}. 
Further, since 

S s = S 7 x (RP 1 - {00}) w {0} w {oo} 

where RP  ~ is the semicircle covered twofold by S 1, the base manifold E is 
also considered to be equivalent to S 7 x Np1, so that E = S 8 ~ S 7 x RP  1 = 
S4 x S3 • R p 1. 

E / M  = S 3 x RP  ~. In terms of the Chisolm-Farwell  basis for the vectors 
of  the 16 • 16 spin(8) Clifford algebra, E / M  should correspond to 

S 3 = {poTlYo i, po'r2Toi, p2"r3 To} --- {F6, F7, F8} 

plus NP 1 = {P1T3~/5} = {rs}.  
M = S 4 should correspond to 

{PlT3T1, pir3Y2, 01"/'373, plt3T4} = {F1, Fz, r3, r4} 

There should be a splitting E = M + E l  M corresponding to the splitting 
G = H +  G / H .  

Note that reduction from E to M as base manifold by integrating G~ H 
over E / M  leaves a remainder  term in the gauge group of  RP  1 because the 
S 1 term in G / H  is a double cover of  the R P  1 term in E / M .  Physically, 
that means that the resulting gauge group over base manifold M = S 4 is 
not H, but is 

RP  1 x H = Rp1 X S 2 X S 4 X S 4 X S 6 X SU(3) 

S 3 • S 4 • (S  4 • S 6) • S U ( 3 )  

SU(3) corresponds to color SU(3) (Giinaydin, 1976). 
The S 4 with Chisolm-Farwell  basis 

{POTOYS1, p07"0'~52, ROZO'Y53, pO~/54} = {FIFs, F2Fs, F3, rs ,  F4Fs} 

corresponds to four-dimensional translations of  the R 4 of which S 4 is a 
compactification. S 6 has almost complex structure based on pairs of  
imaginary quaternions (Kobayashi  and Nomizu, 1963, 1969), which struc- 
ture is locally like S3 x S3 = SU(2) x SU(2) = spin(4), the Lie algebra of  the 
covering group of the Lorentz transformations. Therefore S4x S 6 corre- 
sponds to de Sitter gravitation. 

The other S 4 with Chisolm-Farwetl  basis 

{p3"royb p3~'o'y2, p37"oY3, P3roY4} = {F~Fs, F2F8, ['31"8, F4F8} 

corresponds to electromagnetism. 
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Of the R P  1 x S 2 = S3, the S 2 with Chisolm-Farwell basis 
{pl-c25~oi, plo'1Toi}={FsF6, FsF7} corresponds to the two charged massive 
weak SU(2) bosons and the RP 1 with Chisolm-Farwell basis {P3~'075} = 
{FsFs} corresponds to the neutral massive weak SU(2) boson. Half  of the 
S 1 {FsFs} was "eaten" by the RP 1 in E / M  with Chisolm-Farwell basis {Fs}, 
leaving the other half of the S ~ that double covers RP 1. 

The Higgs SU(2) bivectors with Ch i so lm-Farwe l l  basis 
{FsF6, F8I'7, F6FT} were "eaten" by combining with the S 3 vectors in E / M  
with Chisolm-Farwell basis {I'6, FT, ['8}. 

The geometric Higgs mechanism works as follows: 
Let A8 be a G = spin(8) 1-form on E = S8= Rsu  {oo}, and F8 a G = 

spin(8) 2-form on E. Then A8 is in the space of the eight vectors of 
the spin(8) Clifford algebra, and F8 is in the space of the 28 bivectors of 
the spin(8) Clifford algebra. 

Consider the Yang-Mills action Ss 8 Fs^*Fs+(q~,asq~), in which the 
Fs n *F8 term is the curvature terms and the (q~, a8r term is the spinor 
matter term. 

The objective is to reduce the Yang-Mills structure over S s with vector 
potential, or connection, As, bivector curvature Fs, and Dirac operator 0s 
acting on spinor spaces to a Yang-Mills-Higgs structure over S 4 with 
corresponding connection A4, curvature F4, and Dirac operator 04. 

Consider the curvature action Ss 8 F8 n *Fs. Note that/78 is a 2-form and 
*Fs is a 6-form. Using the splittings spin(8)=H+spin(8)/H and S 8= 
$4+ Ss/S 4, split Fs into components in H along S 4 (denoted by F8n) and 
components in sp in(8) /H = S 3 x S 1 along S8/S 4 ~- S 3 x RP ~ (denoted by 
Fso/n), so that Fs = Fsn + Fs~/n. Then the action can be written as 

f (Fsn ^ * F s n + F s n  ^*Fso/H+Fsa/u ^*Fsn+Fsa/n ^ * F s a / n )  
S s 

The term ~s~FsnA*Fsu, after integration over E / M = S 3 x R p  1, 
becomes a pure Yang-Mills action term for gauge group H over base 
manifold M = S 4, or, in effect, ~s" F4^ */74, where F4 is a 2-form in the 
generalized Lie algebra H = S 2 x S 4 x S 4 x S 6 x SU(3). 

The terms 

Is~ (FsH ̂  * Fs~ /  n + FsG/ H ^ * F s ~  ) 

become 

fs D~@(G/H) ^ *D~@(G/H) 
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where DM is the covariant gradient in the directions of  M = S 4, and where 
Og(G/H) is the spin(8) Clifford algebra 0-form corresponding to the invari- 
ance of A8 with respect to the vector field in G/H along the E / M  direction 
of E = S 8. 

According to Mayer (1981), the term ~s 8 Fso/H A *Fso/~ becomes 

s" {[cb( G/ H), dg( G/ H) ] -dp([ G/ H, G/ H])} 2 

Therefore the total action over S 4 becomes 

Is4 F4 A * F4 + Is4 ( DM~( G/ H) A * DMdP( G/ H ) 

+ { [ ~ ( G / n ) ,  ~(a /H)]  - qb([ GI H, GIn])} 2) 

The term 

I ~4 ( DMdp( G/ H) A * D~dg( G/ n )  

+ ([d~(G/n), ~(G/H)] - rb([G/H)] - dp([G/H, G/H])} 2) 

is just the standard Ginzburg-Landau-Higgs potential corresponding to 
four Higgs scalars arising from the four-dimensional spaces E / M  and G/H 
that give mass by spontaneous symmetry breaking to the three weak vector 
bosons of the massive weak boson SU(2) part of  the spin(4) component 
of spin(8). The spin(8) Higgs mechanism is similar to that described in 
Section 22.3 of  Lee (1981) for an SO(3) gauge group, except that the two 
modes of a zero-mass neutral weak boson and the one mode of a massive 
Higgs scalar described by Lee are combined in the spin(8) theory into three 
modes of  a massive neutral weak boson, denoted by W ~ 

The term Ss 4 F4 A *F4 is a pure Yang-Mills action term for gauge group 

H = S 2 x S 4 x S 4 x G2 = S 2 x S 4 X (S 4 X S 6) X SU(3) 

over base manifold M = S 4. When the massive W ~ resulting from the Higgs 
mechanism is added, the gauge bosons of  spin(8) gauge field theory that 
act over base manifold S 4 correspond to 

RP l x H ~ R P  l x S  2 x S  4 x ( S  4 x S  6) x S U (3 )  

S 3 x S4x (S4x S6) x SU(3) 

Now consider the spinor matter action Ss 8 (~o, 08~o). As suggested by 
Mayer (1981), begin with the spinors on S 8 with group spin(8). In Section 
6, generalized spinor matter fields were constructed whose fibres are Qs= 
Qs+@ Qs_, with Q8 = S 7 x RP 1 and Qs = $7 X SIo Therefore Q8 corresponds 
locally to the octonions O by the local correspondences of  S 7 with the 
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imaginary octonions and S 1 with the real octonions. Globally, the decompo- 
sition Q8 = Qs+~ QS_ corresponds to the twofold covering of RP 1 by S 1. 

Let 08 be the generalized Dirac operator for spin(8) Yang-Mills over 
S 8. The operator 08 is the first-order differential operator whose symbol is 
Clifford multiplication (Parker, 1982). The connection As defines a covariant 
derivative Vs, which maps the spinor space sections F(Q 8) to F(QS|  T*SS). 
Since, for spin(8) gauge field theory, the base manifold S 8 is considered to 
be equivalent to S 8 - {oo} --- R 8, the base manifold dual tangent space T * S  8 

T*R 8 corresponds to the vector space of the spin(8) Clifford algebra. Clifford 
multiplication by a vector element in T*R 8 interchanges the even and odd 
subspaces of the spin(8) Clifford algebra, and therefore interchanges the 
even and odd half-spinor spaces Qs and QS_, so that Clifford multiplication 
o-: Q8 |  T . R 8~  Q8. The operator 08 is defined by 

a~: r ( Q ~ )  - v~- ,  r(Q~, | r * R  ~) - ~ - ,  r ( Q ~ )  

Let 04 be the corresponding generalized Dirac operator for H =  
S 2 x S 4 x S 4 x G2 Yang-Mills-Higgs over S 4 with the same Qs spinor matter 
field fibres. Then, if r is a spinor matter field, the spinor matter action 
terms should be Ss" (r 04r162  Or  (a Yakawa term). 

Therefore, the total action for spin(8) gauge field theory over S 4 should 
be of the form 

s' F4 ^ *F4 + (DMO ^ *D~t~b + ([O, O] - q~)2) + (r 04r + (r Or 

Some interesting relationships involving the spinor matter term may 
prove useful in further analysis. 

Note that G2, the automorphism group of the octonions O and therefore 
the local automorphism group of Qs, appears in spin(8) = S 7 x S 7 x G2 along 
with two copies of the intersection of two hemispheres of S 8. 

Since the two-component open cover transition function of S 8 for 
spin(8) Yang-Mills takes values in spin(8) = S 7 x S 7 x G2, it naturally corre- 
sponds to both a map from the boundary of  one open covering set to the 
boundary of  the other (S 7 x S7) and to a local automorphism of the associ- 
ated spinor matter fibre Q8 (G2). Therefore the spinor matter fibres Q8 are 
naturally related to the duality structure of spin(8) Yang-Mills over S 8 that 
Giirsey and Tze (1983) have compared to the duality structure of spin(4) = 
Sax S a Yang-Mills over S 4. As observed by Grossman et al. (1984), the 
last Hopf  map shows that spin(8) is the standard Yang-Mills gauge group 
over S s=  O P  ~ with instanton number 1. 

For the RP 1 x H Yang-Mills over S 4, RP 1 x H = S 3 x S 4 x S 4 X G 2 

naturally corresponds to a map between the two copies of the entire base 
manifold S a related to electromagnetism and the translational part of  de 
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Sitter gravitation, to the G2 local automorphism of the associated spinor 
matter fibre Q8 related to the color force and the Lorentz part of  gravitation, 
which carries color charge, and to S 3 related to the SU(2) weak bosons. 

11. FORCE STRENGTHS 

The relative strengths of  the force of gravitation, the color force, the 
weak force, and the force of electromagnetism should be determined in 
part by their relationships to the base manifold S 4 and each (hal0 spinor 
manifold Q~ of  spin(8) gauge field theory. 

The other part of  their relative strengths should be determined by 
considering them to be proportional to the ratio of  the square of  the electron 
mass to the square of the characteristic mass, if any, associated with the 
forces. The electron mass me is the only mass term that is not calculable 
in spin(8) gauge field theory, in which it is a fundamental quantity like the 
speed of light c and Planck's constant h. 

The characteristic mass term only applies to gravitation, for which the 
mass term is the ratio of  the square of the electron mass to the square of  
the Planck mass, and to the weak force, for which the mass term is the ratio 
of the square of the electron mass to the sum of  the squares of the weak 
vector boson masses. Neither the electromagnetic force nor the color force 
has massive gauge bosons or Planck-mass-type characteristic masses. 

This section deals with the part of the relative strengths of  the force 
of  gravitation, the color force, the weak force, and the force of electromag- 
netism due to their relationships to the base manifold S 4 and each (half) 
spinor manifold Q8 of  spin(8) gauge field theory, called the geometric part 
of the relative strengths. 

First, consider the base manifold S 4. Each of the four forces has a 
natural global action on a part of  $4: 

Gravitation has gauge group spin(5), which has a natural global action 
on spin(5) /spin(4)= S 4. Therefore the base manifold component of  the 
geometric part of the strength of gravitation is S 4. 

The color force has gauge group SU(3), which has a natural global 
action on 

SU(3) /S(U(2)  x U(1)) = CP  2 

CP 2 is the same as S 4 except for structure at ~ .  Therefore the base manifold 
component of the geometric part of  the strength of  the color force is S 4. 

The weak force has gauge group spin(4), but that is reducible by 
spin(4) = S U ( 2 ) x  SU(2) and spontaneous symmetry breaking to SU(2),  
which has a natural global action on SU(2)/U(1)  = S 2. S 4 contains S 2. The 
base manifold component of the geometric part of  the strength of one-half 
of the weak force is S 2. 
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Electromagnetism has gauge group U(1) 4, the maximal torus of spin(8), 
but that is reducible to U(1) by considering each of the four U(1)'s in 
U(1) 4 to be one space-time component of the photon in the path-integral 
formulation of quantum electrodynamics (Leighton, 1959). U(1) has a 
natural global action on U(1)= S 1. S 4 contains S 1. The base manifold 
component of the geometric part of the strength of one-fourth of electromag- 
netism is S 1. 

Second, consider the (half) spinor manifold Q8. Each of the four forces 
has a natural local action on Qs, which extends to the full Q8 because Qs 
is parallelizable. To determine which part of Q8 corresponds to each of 
the four forces, it is useful to recall that Q~ = s 7 x RP 1 is the Silov boundary 
of an irreducible symmetric bounded domain of type IV8, denoted by 

8 ~  D~ - spin(10)/spin(8) x U(1) 

Gravitation has gauge group spin(5), so that it has a natural local 
action on an irreducible symmetric bounded domain of type IVs, 

D~ = spin(7)/spin(5) x U(1) 

D~ has Silov boundary Q~ = S4x RP 1. Q8 contains Qs. The (half) spinor 
component of the geometric part of the strength of gravitation is Q5 = 
S 4 X R P  1. 

The color force has gauge group SU(3), so that it has a natural local 
action on an irreducible symmetric bounded domain of type/1,3, 

1,3 . D~ ~- S U ( 4 ) / S ( U ( 3 )  x U(1)) = B 6 

D~ 3 has Silov boundary Q1,3= S 5. Q8 contains Q1,3 The (half) spinor 
component of the geometric part of the strength of the color force is Q1,3 = $5, 

Each of the SU(2) gauge groups in the spin(4) of the weak force has 
a natural local action on an irreducible symmetric bounded domain of type 
IV3, 

D~ ~ spin(5) /SU(2)  x U(1) 

D 3 has Silov boundary Q3 = S 2 x RP'. Qs contains Q3. The (half) spinor 
component of the geometric part of the strength of one-half of the weak 
force is Q3 = S 2 x ~p1. 

Each of the U(1) gauge groups in the U(1) 4 of electromagnetism has 
a natural local action on U(1)= S 1. Q8 contains S 1, The (half) spinor 
component of the geometric part of the strength of one-fourth of electromag- 
netism is S 1. 

Third, note that in some cases the dimension of the base manifold 
component differs from the dimension of the (half) spinor component. For 
the full spin(8) theory over S s prior to dimensional reduction, the (half) 
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spinor space Q8 and the base manifold S 8 are both eight-dimensional, a 
fact that is related to the isomorphism, peculiar to spin(8), of spinor and 
vector representations. Therefore, in Yang-Mills theory for spin(8) over S s, 
the dual tangent space T*(S 8) of the base manifold can act on the (half) 

T* $8~| n8 spinor space Qs. by a Clifford multiplication map ( , ~ Q~ that 
is the symbol of a generalized Dirac operator 08: F(Q 8) -4 F(Q 8) (Parker, 
1982). Such a structure is necessary for a gauge field theory to have spinor 
matter fields that are compatible with the gauge fields over the base manifold. 

Therefore in case of forces whose base manifold component and (half) 
spinor component have different dimension, it is necessary to include a 
dimensional adjustment factor. 

Gravitation has a five-dimensional (half) spinor component Q~ = 
S 4 x RP 1, which is the Silov boundary of D~. The base manifold component 
S 4 is four-dimensional. The dual tangent space T*(S 4) of the base manifold 
is generated by the unit S 4 pseudoscalar function I4(X), X C S 4, of the tangent 
Clifford algebra of S 4 as defined in Chapter 4 of Hestenes and Sobczyk 
(1984). For I4(x) to act by Clifford multiplication on Qs, the dimensionality 
of Q~ must be reduced from five to four and the volume V(Q~) must be 
divided by a length Ls. To calculate Ls, recall that Q~ is the Silov boundary 
of Ds. I f  the volume V(D 5) is put into a four-dimensional cube, such as 
I4(x), then the gravitational dimensional adjustment factor L5 is the fourth 
root of the volume V(D 5) of Ds.. 

The dimensional adjustment factor L5 is the least intuitively clear part 
of spin(8) gauge field theory. A similar factor was used by Wyler (1971) in 
calculating his value of the electromagnetic fine structure constant, and the 
difficulty in finding a physical interpretation for it was a major factor in 
criticisms of Wyler's work (Gilmore, 1972). 

The color force has a five-dimensional (half) spinor component Q~;3 = 
S 5, which is the Silov boundary of D~ '3. The base manifold component S 4 
is four-dimensional. The color force dimensional adjustment factor L1,3 
should be the fourth root of the volume V(D 1"3) of D• 

One-half of the weak force has a three-dimensional (half) spinor 
component Q~ = smx RP 1, which is the Silov boundary of D 3. The base 
manifold component S 2 is two-dimensional. The dimensional adjustment 
factor for one-half of the weak force should be the square root of the volume 
V(D ) of 

The electromagnetism (half) spinor component and the base manifold 
are both S 1, so no dimensional adjustment factor is needed. 

Fourth, and finally, the geometric part of the strength of each of the 
four forces is calculated, using volumes from Hua (1963), as follows: 

Gravitation has a geometric strength of the volume V(S 4) = 8~r2/3 of 
the base manifold component, multiplied by the volume V(QS.) = 87r3/3 of 
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the spinor component,  and divided by the fourth root of the volume 
V(DS) = (~.5/245 !)1/4. Therefore the geometric strength of gravitation is 
VG = 28~r'(15/2~')~/4/9 = 3444.0924. 

The color force has a geometric strength of the volume V(S 4) = 87ra/3 
of the base manifold component, multiplied by the volume V(Q~; 3) =4-/r 3 
of the spinor component, and divided by the fourth root of the volume 
V(D~ 3= (qr3/6) 1/4. Therefore the geometic strength of the color force is 
V C = 25"ffa(6qr)l/4/3 = 2164.978. 

One half of the weak force has a geometric strength of the volume 
V(S 2) = 47r of the base manifold component,  multiplied by the volume 
V(Q3.) = 4~ 2 of the spinor component, and divided by the square root of 
the volume V(D 3) = (~'3/24)1/2. Therefore the geometric strength of one- 
half of the weak force is Vw = 2%r2(6/~r) 1/2 = 436.46599. 

One fourth of  electromagnetism should have a geometric strength that 
is the volume V(S ~) = 2~- of the base manifold component,  which is also 
the volume of  the spinor component. The Abelian gauge force of electromag- 
netism does not have any strength reduction factor. Therefore the geometric 
strength of  one-fourth of  electromagnetism is VE = 2~r = 6.2831853. 

Therefore, mass factors for the weak force and gravitation aside, the 
relative strengths of the forces are: 

Gravitation: a~ = V~/ Vo = 1 

Color force: ac = Vc /V~  = 0.6286062 

Weak force: aw = 2 Vw/V~ = 0.2534577 

Electromagnetism: aE =4VE/V~ = 1/137.03608 

12. LATFICE GAUGE STRUCTURE AND QUANTIZATION 

If the base manifold for spin(8) gauge field theory (either S 8 before 
dimensional reduction or S 4 after dimensional reduction) is continuous, 
then there are no nearest neighbor relationships for the spinor spaces Q8 
at any point on the base manifold, because any path between two base 
manifold points contains infinitely many intervening points. For a path 
integral formulation of physics, nearest neighbor relationships are useful 
to explain the transition between fermions at two nearby base manifold 
points linked by gauge bosons. 

To get such nearest neighbor relationships, a lattice should be used as 
base "manifold,"  or base lattice. Regular lattice structures in four and eight 
dimensions are described in Coxeter (1973). Lattices on n-dimensional 
spheres correspond to (n + D-dimensional polytopes. There are only three 
regular (n+ l ) -d imens iona l  regular polytopes (generalized cube, octahe- 
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dron, and tetrahedron) for n = 4 and for n = 8, so there is no arbitrarily fine 
regular global lattice structure for S 4 or S 8. Therefore, to get a regular lattice 
structure that can be made arbitrarily fine for lattice gauge theory regulariza- 
tion to approximate base manifolds S 4 o r  S 8, the lattice structure must be 
local. 

For S 8= O P  1, the natural lattice structure is based on Gossett's eight- 
dimensional honeycomb 52~ that represents the integral octonions (Coxeter, 
1973). The vertices of 521 in R s have as coordinates all sets of eight integers, 
or eight halves of  odd integers with an even sum. 

For S 4= HP 1, the natural lattice structure is based on the honeycomb 
{3, 3,4, 3} that represents the integral quaternions (Coxeter, 1973). The 
vertices of  {3, 3, 4, 3} in R 4 have as coordinates all sets of four integers, or 
four halves of  odd integers. 

The lattice structure can cover at most S" - {~}. Therefore the smallest 
number of  neighborhoods that can cover S n with lattice structure is two, 
one covering the "south pole" at 0 and the other covering the "north pole" 
at ~ ,  with boundary conditions at the overlap of  the two neighborhoods 
at the equator. This may correspond to the necessity in quantum theory to 
have at least two things, the observer and the observed. The twofold lattice 
covering of  S n corresponds to the construction of the transition function 
M used in dimensional reduction of the spin(8) base manifold from S 8 to 
S 4, following the construction of Problem 3 of  Chapter Vbis of Choquet- 
Bruhat et al. (1982). 

The four-dimensional base lattice is locally {3, 3, 4, 3}, with spin(8) 
gauge bosons at the links of the lattice and with spin(8) acting through its 
gauge bosons on elementary fermions at the vertices. 

Spin(8) gauge field theory should be quantized by a lattice gauge 
quantization procedure similar to that described in Creutz (1983). Creutz 
(1983) uses a hypercubic lattice with a Wilson action for square plaquettes. 
The plaquettes are two-dimensional square faces of the lattice hypercubes, 
and there are six plaquettes per vertex in the hypercubic lattice (Coxeter, 
1973). 

For the {3, 3, 4, 3} lattice of spin(8) gauge field theory, plaquettes would 
be two-dimensional triangular faces, and there are 32 plaquettes per lattice 
vertex (Coxeter, 1973). As a general vertex in a {3, 3, 4, 3} lattice can be 
considered to be the center of a hypercube, 32 of  the 96 plaquettes at a 
lattice vertex can be thought of as corresponding to the central vertex. 

As it is the lattice of integral quaternions, {3, 3, 4, 3} is naturally related 
to Lorentz invariance. A general vertex can be considered to be the center 
of  a hypercube (16 vertices) and the centers of the neighboring hypercubes 
(eight more vertices), or equivalently, to be the center of a 24-cell (24 
vertices). If  any of the 24 neighbor vertices is chosen to he th~ filtl,ro tlm~.lHr~ 
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direction, then the opposite neighbor vertex is the past timelike direction, 
the eight neighbor vertices closest to the future neighbor vertex form the 
future light-cone, the eight neighbor vertices closest to the past neighbor 
vertex form the past light-cone, and the six remaining neighbor vertices 
define the three positive and three negative space directions. 

Note that a choice of future timelike direction at any vertex in the 
{3, 3, 4, 3} lattice determines space-time structure for the entire lattice. 

13. WEAK BOSON MASSES 

In a lattice gauge theory, the gauge bosons are on the links and the 
fermions are on the vertices. The spin(4) weak force is reduced by spon- 
taneous symmetry breaking to spin(3)= SU(2), as indicated by the self- 
duality of  the bivectors of the 1 + 4 + 6 + 4 +  1 = 16-dimensional Clifford 
algebra C4 for spin(4). The symmetry-breaking mechanism may be 
described by considering two lattice links connected by a common vertex. 
Consider the first link as carrying a massless gauge boson corresponding 
to any of the six infinitesimal generators of spin(4). Spontaneous symmetry 
breaking should require that the gauge boson carried by the second link be 
such that the net result of the two links taken together should be the same 
as one of the three infinitesimal generators of  SU(2), which should be 
identified with the W +, W-, and W ~ The notation W ~ is used here to 
distinguish this pure weak symmetry breaking, with no ad hoc Higgs bosons 
and no direct involvement of electromagnetism, from conventional elec- 
troweak theory. 

Mass production by "natural" symmetry breaking, without artificially 
introducing Higgs fields, was done by Finkelstein et al. (1963), who used 
quaternionic field theory to construct two charged massive vector fields 
(analogous to the W § and W-) and one neutral massless vector field 
(analogous to the photon). The technique used in Section 10 is similar to 
that of Mayer (1981). 

The further decomposition of the three weak vector bosons into the 
neutral W ~ and the charged pair W § and W- is related to the decomposition 
of S 3 into S 1 x 5 2 by the Hopf  fibration S ~ ~ S 3 ~ $2,  

In spin(8) gauge theory, the masses of the first-generation W bosons 
should come from the stable first-generation particles and antiparticles 
associated with the vertex joining the two links. The sum of the masses of 
the stable first-generation ferrnion particles and antiparticles has been calcu- 
lated as 3.754 GeV. The sum of the masses of the W1 § WI- ,  and W1 ~ 
should be 3.754 GeV multiplied by the ratio of the weak force strength to 
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the electromagnetic force strength: 

mwa+wa-,w~O = 2( Vw/2 VB)3.754 GeV = 260.774 GeV 

The factor VE is multiplied by 2 because there are two U(1) 's for each 
SU(2) 's  in spin(4). The other factor of  2 is for the two helicity states of  
each massive fermion. 

To determine the first-generation masses of  W1 § W I - ,  and W1 ~ 
individually, consider that SU(2) can be identified with the unit quatemions 
$3; that S 3 has a Hopf  fibration S a ~ S 3 -") $2;  and that S 2 should correspond 
to W1 + and W1-  while S ~ should correspond to W1 ~ 

The unit sphere S 3 in R 4 contains the point (1/2, 1/2, 1/2, 1/2); the 
corresponding point S 2 is (1/x/3, 1/v/3, 1/x/3); and the corresponding point 
in S 1 is (1/x/2, 1/v/2). Then the ratio of  the sum of  the W1 + and W1- 
masses to the W1 ~ mass should be 

(2 /V/3)  V(S2)/(2/~q/2) V ( S  1) = 1 .632993 

Therefore 

mwlo = 260.774/(1 + 1.632993) = 99.04 GeV 

As the masses of  the W1 § and W1- should be equal, mwl § : mw~- = 
80.97 GeV. 

Therefore the observed first-generation weak force constant Gw~ should 
be given by 

G w  I = o t w m e / ( m w l + + 2  2 m 2Wl_ ..~ - / ~  2w10) = 2 .886 • 10 -12 

and 2 Gwamproton = 0.97 x 10 -5, where the proton mass is calculated from the 
constituent masses of  the up and down quarks to be 938.2626 MeV, or 
1836.118 times the electron mass. 

Similar calculations can be done using the second- and third-generation 
fermion particles and antiparticles. For the second generation, W2 ~ has a 
mass of  about  329 GeV and W2 ~ has a mass of  about 403 GeV. For the 
third generation, W3 • has a mass of  about 17,549 GeV and W3 ~ has a mass 
of  about 21,492 GeV. The corresponding observed weak force constants 
should be smaller than the first-generation Gwl by factors of  about 
(1/4.0711) 2~  1/16.57 for the second generation and about (1/217.004) 2~  
1/47,091 for the third generation. The sum for all three generations of  
Gwm2roton is about 1.03 x 10 -5. 
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14. K O B A Y A S H I - M A S K A W A  T H E O R Y  

The three generations of W bosons may be related to the Kobayashi- 
Maskawa (1973) theory of generation mixing of quarks, particularly as 
parametrized by Chau and Keung (1984). The mixing matrix between the 
up, charm, and truth quarks and the down, strange, and bottom quarks is 
due to the action on them of the weak force, and can be written as follows: 

d s b 

u Vud Vu~ 'Cub 

C V~ Vc~ V~b 

t Vtd Vt~ Vtb 
In the Chau-Keung parametrization, the matrix (V~j) is given by the 

product of  three 3 • 3 matrices: 

(i O-sycy cysyO)(-szCZOe i* O0 cz / -sxoCX cxSXo !) 

The first matrix, involving the angle y in the terms cy = cos y and 
sy = sin y, gives the generation mixing between the third and second genera- 
tions. I conjecture that sy = mw2/(m2w2 + m2w3) 1/2= 0.0187571. 

The second matrix, involving the angle z in the terms cz = cos z and 
sz = sin z, gives the generation mixing between the third and first generations. 
i conjecture that sz = mwl/(rn2wl + m23) 1/2 = 0.00460816. 

The second matrix also involves the phase angle qb. I assume, perhaps 
arbitrarily, that skipping the second genertion introduces a 90 ~ phase angle, 
so that dp = 90 o. 

The third matrix, involving the angle x in the terms cx = cos x and 
sx = sin x, gives the generation mixing between the second and first genera- 
tions. I conjecture that sx = mwl/(rn2wl + m22) 1/2 = 0.2385428. 

Using the conjectured values for the parameters gives the following 
Kobayashi-Maskawamatf ix:  

d s b 

u 0.9710 0.239 0 

c -0.239 0.9708 0.019 
-0.00008i -0.00002i 

t 0.0045 -0.0018 0.9998 
-0.0045i -0.001i 

The calculated KM matrix is close to currently accepted values, except 
that the calculated [V~ I = [V c b[ = 0.019. The currently accepted value, based 
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on a truth quark mass m, = 45 GeV, is about 0.05 (Chau and Keung, 1984). 
What would be the effect if m, ~ 130 GeV? 

Note that the conventional KM parametrization is related to the Chau-  
Keung parametrization approximately as follows (Chau and Keung, 1984) 
(see Figure 2): 

SX "~ S 1 ~ IVus[ 

s z  = s , s 3  = I vobl 

sa9 ~- s2sS / sy 

sy ~ (s2 + s~ + 2s2s3cS) 1/2 ~-Ivcb[ 

For the spin(8) values of  sx ~- 0.239, sz ~ 0.239, sz ~- 0.0046, qb ~ 90 ~ 
and sy ~-0.019, the corresponding values of  the conventional parameters 
are sl ~ 0.239, s3 ~ 0.019, 6 ~ 135 ~ and s2 ~ 0.027. 

Inami and Lim (1981) have examined the effect on KM theory of  
m, > weak boson mass. 

From Sections 3.1.a. and 3.2.a. of  Inami and Lim (1981), 

[(c, s2 + c2t3cs)s2[ IC (x , ,  0)[ = K ----- 0.9 x 10 -2 

where t3 = tan 03 = s3 and x, = m , / m w  • 
Use equation (2.14) of  Inami and Lim (1981) 

C(x,,  0) = 3 [ x , / ( x , -  1)] 2 In(x,) + ~ x , - 3 x t / ( x , -  1) 

to define C ( m , )  = [C(x,,  0)1. 
Therefore, as K is constant, and as cl ~ 0.97 and c2 ~ 1 are substantially 

independent of  m,, 

0 . 9 7 s 2 ( m , ) 2  + s 3 ( m t ) c s ( m t ) s 2 ( m , )  = K /  C ( m , )  

sy 2 
s 3  

Fig. 2. 
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To apply the Inami-Lim techniques to compare the spin(8) theoretical 
values with experimental results, first calculate that 

C(45 GeV) = 0.24, C(130 GeV) -~ 1.33 

Then use the spin(8) parameter values and C(130 GeV) ~ 1.33 to calcu- 
late K, getting K = 0.00059. 

Therefore, for mt ~ 45 GeV, 

0.97sz 2 + s3 c~s2 ~ 0.0025 

Also, from the relationships between parameters and the value of 
[V~b]~0.05 for m,~45 GeV, 

S29-1 - 2S3CsS 2 ~- 0.0025 -- S~ 

Comparing the last two equations shows that the spin(8) values of the 
KM parameters at rn, ~ 130 GeV give a value of the constant K that is 
consistent with current experimental values for I Vcbl interpreted for m t - ~  

45 GeV, provided that, for mt ~45 GeV, c~ ~ - s 3 / s 2 .  As that value of c~ is 
within the currently accepted range, the spin(8) theoretical values of KM 
parameters are consistent with existing experimental results. 

15. QCD AND PION MASS 

As pointed out by Isgur and Karl (1983), the quarks and gluons of the 
SU(3) color force are roughly analogous to the leptons and photon of the 
U(1) 4 electromagnetic force, so that crude estimates can be made of color 
force phenomena. 

Hadrons that are observed directly are considered to be composite 
particles made up of quarks bound together primarily by the color force 
gluons. The observed hadrons can be accounted for by requiring that within 
a given composite hadron, all quarks of a given flavor (d, u, s, c, b, or t) 
have parallel spin, and all antiquarks of a given flavor within the same 
composite hadron have parallel spin. The composite hadrons (in which 
quarks are bound by color force gluons) can be considered to be roughly 
analogous to atoms (in which leptons are bound by electromagnetic force 
photons). 

It might also be thought that since gluons carry color charge, there 
should be bound states of gluons, called glueballs. However, as stated by 
Moriyasu (1983), quoting Coleman (1977) and Coleman and Smart (1977), 
a classical glueball cannot exist because if each gluon were attracted to all 
other neighboring gluons, then the gluons would be antiparallel to each 
other, thus contradicting the continuity of the classical gluon field. From 
the lattice gauge field point of view of spin(8) gauge field theory, the 
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requirement of continuity of the classical gluon field should be replaced by 
the requirement that gluons (like quarks of  the same flavor) should be 
oriented parallel to each other within the characteristic radius (typical 
hadron radius) of the color force. 

Note that neither the electromagnetic force strength nor the color force 
strength involves mass terms, so that the electromagnetic fine structure 
constant a~ = 1/137.03608 and the color constant ac  = 0.6286062 should 
give the strengths of the respective forces at an "equilibrium" distance that 
can be crudely estimated by the respective Bohr radii for "atoms" with 
first-generation leptons or quarks. 

For electromagnetism (Lee, 1981), the Bohr radius 

BRE ~ 1/aEme ~- 137 x 4 • 10 -11 cm ~ 5 • 10 -9 cm 

which is just the Bohr radius of the hydrogen atom. 
For the color force, the Bohr radius 

B R c  ~ 1 /acmd  ~- 1 /acmu ~ 4 •  10 -11 cm/(0 .6286•  ~ 1 • 10 -13 cm 

which is approximately the radius of a proton. As the pion, a first-generation 
quark-antiquark pair, is the primary carrier of  the strong force that results 
from the color force, it is reasonable to expect that the effective pion mass, 
or the square root of  the squares of the masses of the neutral and charged 
pions, should be roughly given by the mass whose Compton wavelength is 
the radius of  the proton, or, equivalently, the color force Bohr radius. 
Therefore 

2 2 1/2 (m,~ + m=_~) ~ 1 / B R c  ~ 1013 cm -a ~ 400m~ ~ 200 MeV 

As the experimental value of  the pion mass is about 135 MeV for the neutral 
pion and about 139.6 MeV for the charged pions, the experimental value 
is about (1352+ 139.62) 1/2~ 194.2 MeV. 

The 200 MeV value also roughly agrees with the characteristic length 
l ~  (200+ 50 MeV) -1 of  QCD renormalization theory as given in Equation 
(23.124) of  Lee (1981). For high energy, and with three generations of 
quarks, Lee (1981) gives a c  = 6~r/[21 In(/.  EQ)],  where EQ is the energy 
of a "typical" quark mass. Lee (1981) uses a c  ~ 0.39, and gets EQ ~- 1.6 GeV. 
For spin(8) theory, a c  -~ 0.6, so that EQ ~ 900 MeV. It seems that either set 
of  values is reasonably consistent with experiment, considering the very 
crude estimation techniques used. 

An interesting conjecture as to the pion mass is based on an observation 
of  P. Stanbury (personal communication, 1985) that is roughly equivalent 
to the equation BE.,, ~ (2/  3 )md + 2rn~., where BE= = 2me - m= is the binding 
energy of  a pion. Stanbury's observation implies that 3m,~ = (4~3)me, so 
that m , , ~ ( 4 / 9 ) m a  ~139 MeV. A reasonable physical conjecture for the 
basis of  the equation BE~. ~ (2/3) me + 2 m~ might be that the (2/3) me term 
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comes from the "cancellation" of one-third of each of the two constituent 
quarks of the pion, and that the 2m~ term comes from "sharing" a virtual 
pion-antipion pair. 

In any event, given the pion mass and the long-range color force 
constant (which may be derivable from ~c) ,  Guralnick et al. (1984) have 
shown that lattice gauge theory QCD calculations on a Cray XMP have 
given reasonable results for meson and baryon masses and strong-force 
couplings of ~ and p mesons. 

16. PLANCK MASS 

To estimate the Planck mass, use the lattice gauge structure of spin(8) 
gauge field theory to estimate the mass of a one-vertex universe, as that 
should correspond to the Planck mass. 

Note that the only stable massive elementary fermions are those of the 
first generation, as second- and third-generation massive leptons and quarks 
decay into massless/z-neutrinos or z-neutrinos and massive first-generation 
leptons and /o r  quarks. 

Consider the Planck mass particle to be the sum over all possible 
combinations of particle-antiparticle pairs of first-generation fermions at 
one vertex. Since a one-vertex lattice has no links, there are no gauge bosons 
to carry away any of the pairs. There are eight fermionparticles and eight 
fermion antiparticles, for a total of 64 particle-antiparticle pairs. A typical 
combination should have several quarks, several antiquarks, a few colorless 
quark-antiquark pairs that would be equivalent to pions, and some leptons 
and antileptons. 

Consider the contribution of independent fermion leptons and quarks 
to the mass sum. The neutrino is massless, and the electron and positron 
each have mass of only about 1/2000 GeV. The up and down quarks and 
antiquarks each have mass of almost 1/3 GeV. As there are three colors of 
the color force, there are 12 distinct such quarks and antiquarks. Due to 
the Pauli exclusion principle, no fermion lepton or quark could be present 
at the vertex more than twice. Due to the color force requirement that all 
quarks of a given flavor and all antiquarks of a given flavor within a given 
composite particle (i.e., within the color force characteristic radius of 
- 1 0  -13 cm) should have parallel spin, no quark or antiquark could be 
present at the vertex more than once. 

Therefore the total contribution to the Planck mass of independent 
elementary fermions is only - 12/3 GeV = 4 GeV. 

Pions, colorless quark-antiquark pairs, are bosons and are not subject 
to the Pauli exclusion principle. Of the 64 particle-antiparticle pairs, 12 are 
pions, each having mass of about 0.14 GeV. A typical combination should 
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have about six pions. If  all the pions are independent, the typical combina- 
tion should have a mass of 0.14• 6 GeV= 0.84 GeV. However, just as the 
pion mass of  0.14 GeV is less than the sum of the masses of  a quark and 
an antiquark, pairs of oppositely charged pions may form a bound state of 
less mass than the sum of two pion masses. If  such a bound state of 
oppositely charged pions has a mass as small as 0.1 GeV, and if the typical 
combination has one such pair and four other pions, then the typical 
combination should have a mass in the range of 0.66 GeV. 

Summing over all 2 64 combinations, the total mass of a one-vertex 
universe should give rnp~a~ck = (1.217-1.550) • 1019 GeV. However, the 
method of  estimating is so rough that it is probably fairer to say that the 
estimated value should be roughly mp~a.ck ~ (1-1.6) x 1019 GeV. 

Therefore the observed gravitational constant Gc should be given by 

GG : 2 2 10-45 aG( m , /  mplanck) ~ (1-2.6) • 

and 2 GGmproton "~ (3.4-8.8) x 10 -39. 

17. DE SITFER GRAVITATION 

MacDowell and Mansouri (1977) have formulated gravitation as a 
gauge theory. They showed that a spin(5) = sp(2) Yang-Mills gauge group 
over a four-dimensional base manifold such as S 4 produces de Sitter 
gravitation, that is, Einstein gravitation plus a cosmological term. 

De Sitter gravitation with gauge group spin(5) = sp(2) as described by 
MacDowell and Mansouri (1977) may form a basis for cosmological models 
such as that of Gott (1982) in which bubbles of Minkowski space are formed 
by quantum tunneling in a de Sitter false vacuum with Hawking radiation. 
The Minkowski space undergoes an early exponential expansion phase, 
causing particle creation that in turn causes a phase transition to a standard 
Robertson-Walker k = - 1  open universe like ours. 

Gravitation in spin(8) gauge field theory has ten gravitons (eight 
charged and two neutral). The eight charged gravitons should be confined 
by a mechanism similar to the gluon confinement mechanism. Graviton 
confinement should be to within the characteristic radius of the gravitational 
force, about the Planck length, - 1 0  -33 cm. 

Bound states of charged gravitons should not exist, in analogy with 
the argument of Moriyasu (1983), quoting Coleman (1977) and Coleman 
and Smart (1977), against the existence of  classical color charge glueballs, 
because gluons within the characteristic color force radius should be orien- 
ted parallel to each other. 



400 Smith 

18 .  C O M P A R I S O N  W I T H  E X P E R I M E N T  

The exper imental  values in Table V are taken from various sources, 
and may be rounded  off or approximate.  The spin(8) values may be rounded  
off from the values calculated in this paper. Evidently,  there is pretty good 
(but  not  perfect) agreement  with all the known  values except the value for 

the t ruth quark.  

C E R N  has a n n o u n c e d  that the t ruth quark  has been  observed to have 
a mass of about  40 GeV (Rubbia ,  1984). The observat ion is based on decay 

of the W § boson  into a meson  made up  of a t ruth quark and  a bo t tom 
ant iquark,  as well as the corresponding decay of the W -  boson  into a meson  
made up of a truth an t iquark  and  a bo t tom quark. Such decay should 

produce two jets, a charged lepton, and  a neutr ino.  C E R N  identifies the 

Table V. a 

Quantity Spin(8) Experiment 

me_neutrino 0 ~ 0 
md, MeV 312.8 =350 
mu, MeV 312.8 =350 
m~, MeV 104.8 105.7 
m~_neutrino 0 ~ 0  
ms, MeV 523 2550 
mo GeV 1.99 =1.7 
m, GeV 1.88 1.78 
tar.neutrino 0 ~ 0  
rob, GeV 5.63 =5.2 
m, GeV 130 ? 
m w t  += row1- ,  GeV 81 ~81 
row1 o, GeV 99 ~93 
row2 § = row2- ,  GeV 329 ? 
mw2o ,  GeV 403 ? 
row3 += m w 3 -  , TeV 17.5 ? 
mw3o ,  TeV 21.5 ? 
mp1~n~u , GeV -(1-1.6) X 1019 1.22 • 1019 

a E 1/137.03608 1/137.03604 
2 Gwmproton 1.03 X 10 -s 1.02 X 10 -5 

a c 0.6286 ~ 1 
2 GGmproton ~(3.4-8.8) X 10 -39 5.9 X 10 -39 

Kobayashi- Maskawa-Chau-Keung parameters: 
Cabibbo angle, sin x 0.239 0.23 

sin y 0.0188 0.019 
sin z 0.0046 0.005 

qb deg 90(?) ? 

~In spin(8) gauge field theory the speed of light, Planck's constant, and the 
electron mass are given and everything else is calculated from them. 
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truth quark or antiquark as one jet, the charged lepton, and the neutrino, 
which are observed to have a total mass of  about 40 GeV. 

If the CERN mass for the truth quark is correct, then spin(8) gauge 
field theory is wrong, because it predicts a truth quark mass of  about 
130 GeV. 

Could the 40-GeV jet, lepton, and neutrino in W + and W- decay be 
something other than a truth quark or antiquark? CERN has also observed 
W ~ decay that produces an electron-positron pair with energy of about 
50 GeV plus a hard photon (Lubkin, 1983). If  the truth quark mass were 
about 40 GeV, then W ~ decay into a meson made up of a truth quark and 
a truth antiquark would produce an 80-GeV electron-positron pair, not the 
observed 50-GeV electron-positron pair, not the observed 50-GeV pair. 

If the 40-GeV jet, lepton, and neutrino in W + and W- decay do not 
correspond to a meson with a truth quark or antiquark, but rather to a 
decay scheme similar to the W ~ decay producing an electron-positron pair 
at 50 GeV, then spin(8) gauge field theory might be correct. 

Such a decay scheme could come from a tendency of a W boson to 
decay into two roughly equal parts. In spin(8) lattice gauge field theory any 
fermion is on a vertex and any boson, except W, is on a link. However, a 
W boson is on two links connected by a vertex. When a W boson decays, 
its mass-energy splits into two parts corresponding to the two links. The 
theory gives a mass of about 80 GeV for W + and W- and a mass of about 
100 GeV for W ~ so many W + and W- decay products should be around 
40 GeV and many W ~ decay products should be around 50 GeV. The theory 
is consistent with observations of hard photons and multiple jets. 

CERN has observed enhanced production of  jets with an energy of 
about 147 GeV (Waldrop, 1984). That energy is roughly consistent with the 
existence of a particle containing a truth quark having the mass predicted 
by spin(8) gauge field theory, about 130 GeV. A truth quark with mass of 
about 130 GeV might also account for observations of single jets that, with 
associated neutral particles, have a total energy of about 120 GeV and 
observations of an electron, neutrino, and as many as three jets all having 
total energy as much as 160 GeV. 

One way to decide the matter experimentally might be to look at the 
energy region 250-300 GeV to see if truth-antitruth mesons are produced, 
as would be expected from spin(8) gauge field theory. 

Another relevant type of experiment uses the Kobayashi-Maskawa 
theory (Kobayashi and Maskawa, 1973; Lee, 1981) of relationships among 
fermions of  different generations and observations of CP-violating 
phenomena. The relationship between Kobayshi-Maskawa theory and 
spin(8) gauge field theory has been discussed in the section on Kobayashi- 
Maskawa theory. 
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In addition to the problems of fitting the CERN 45-GeV truth quark 
mass with standard Kobayashi-Maskawa theory, as of the summer of 1985 
CERN was having difficulty confirming its interpretation of the 45-GeV 
events. According to Miller (1985), the UA1 experimenters had observed 
many events clustering near the W • mass rather than distributed as would 
be expected by the CERN truth quark model, and the UA2 experimenters 
had still not seen any convincing event for a 45-GeV truth quark. 

I think that truth is the proper name for the t-quark, whose phenomena 
can confirm or refute the predictions of spin(8) gauge field theory. 
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